Pre_GI: SWBIT SVG BLASTP

Query: NC_017179:1378875 Clostridium difficile BI1, complete genome

Lineage: Peptoclostridium difficile; Peptoclostridium; Peptostreptococcaceae; Clostridiales; Firmicutes; Bacteria

General Information: Clostridium difficile BI1 is a human strain isolated in the United States in 1988. This species is now recognized as the major causative agent of pseudomembranous colitis (inflammation of the colon) and diarrhea that may occur following antibiotic treatment. C. difficile infection represents one of the most common nosocomial (originating in a hospital) infections. This bacterium causes a wide spectrum of disease, ranging from mild, self-limiting diarrhea to serious diarrhea and, in some cases, complications such as pseudomembrane formation, toxic megacolon (dilation of the colon) and peritonitis, which often lead to lethality among patients. The bacteria produce high molecular mass polypeptide cytotoxins, A and B. Some strains produce only one of the toxins, others produce both. Toxin A causes inflammatory reaction involving hypersecretion of fluid and hemorrhagic necrosis through triggering cytokine release by neutrophils. Cytotoxin B depolymerizes actin, the major protein of the cytoskeleton, and thus aids in destruction of tissues. The combined action of the toxins results in necrosis of superficial epithelium and edema (fluidic swelling) in affected areas of intestine. Proliferation of C. difficile is normally prevented by normal intestinal microflora, which is believed to inhibit attachment of the bacterium and its toxins to intestinal walls. Alteration of intestinal microbial balance with antibiotic therapy and increased exposure to the bacterium in a hospital setting allows C. difficile to colonize susceptible individuals. Moreover, it has been shown that subinhibitory concentrations of antibiotics promote increased toxin production by C. difficile.

- Sequence; - BLASTP hit: hover for score (Low score = Light, High score = Dark);
- hypothetical protein; - cds: hover for description

BLASTP Alignment.txt

Subject: NC_004344:257471 Wigglesworthia glossinidia endosymbiont of Glossina brevipalpis,

Lineage: Wigglesworthia glossinidia; Wigglesworthia; Enterobacteriaceae; Enterobacteriales; Proteobacteria; Bacteria

General Information: This organism is the obligate endosymbiont for the tsetse fly Glossina brevipalpis. As Wigglesworthia brevipalpis resides intracellularly, the resulting co-evolution with its host over millions of years has led to a drastic reduction in the bacterium's genome size, resulting in this its inability to survive outside the host. Tsetse fly endosymbiont. This organism is the obligate endosymbiont for the tsetse fly Glossina brevipalpis, Glossina tachinoides, Glossina palpalis palpalis, and Glossina austeni. The tsetse fly is a vector for African trypanosomes, and is the main transmitter of deadly diseases in animals and humans in Africa. The fly feeds on a restricted diet, exclusively consisting of vertebrate blood, and lacks certain metabolic compounds needed for survival and reproduction. To complement this lack in nutrients, the tsetse fly relies mainly on the intracellular bacterial symbiont, Wigglesworthia glossinidia for its viability and fecundity.