Pre_GI: SWBIT SVG BLASTP

Query: NC_017160:4073611 Yersinia pestis D182038 chromosome, complete genome

Lineage: Yersinia pestis; Yersinia; Enterobacteriaceae; Enterobacteriales; Proteobacteria; Bacteria

General Information: Specific virulence factors are encoded within pathogenicity islands (PAIs) that are required for the invasive phenotype associated with Yersinia infections. One key virulence plasmid contained by the three human-specific pathogens is pCD1/pYv, which encodes a type III secretion system for the delivery of virulence proteins that contribute to internalization into the host cell. It is the causative agent of plague (bubonic and pulmonary) a devastating disease which has killed millions worldwide. The organism can be transmitted from rats to humans through the bite of an infected flea or from human-to-human through the air during widespread infection. Yersinia pestis is an extremely pathogenic organism that requires very few numbers in order to cause disease, and is often lethal if left untreated. The organism is enteroinvasive, and can survive and propagate in macrophages prior to spreading systemically throughout the host. Yersinia pestis also contains a PAI on the chromosome that is similar to the SPI-2 PAI from Salmonella that allows intracellular survival in the organism.

- Sequence; - BLASTP hit: hover for score (Low score = Light, High score = Dark);
- hypothetical protein; - cds: hover for description

BLASTP Alignment.txt

Subject: NC_014228:3442159 Xenorhabdus nematophila ATCC 19061, complete genome

Lineage: Xenorhabdus nematophila; Xenorhabdus; Enterobacteriaceae; Enterobacteriales; Proteobacteria; Bacteria

General Information: This genus is a group of insect pathogens which live in a mutualistic relationship with the soil nematode family, Steinernematidae. Free-living, juvenile Steinernema spp. enter insect larvae through the digestive tract. They penetrate the larvae body cavity and release Xenorhabdus spp. into the hemolymph (blood). The bacteria multiply rapidly, killing the larvae, and providing suitable nutrient conditions for the growth and reproduction of the Steinernema spp. The nematode matures and reproduces. The new juveniles reassociate with Xenorhabdus spp. and are released into the soil. Unlike Xenorhabdus bovienii, which is found in different Steinernema spp., Xenorhabdus nematophila is associated specifically with Steinernema carpocapsae and can be used as a model for studying host specificity.