Pre_GI: SWBIT SVG BLASTP

Query: NC_017062:33268 Rickettsia typhi str. B9991CWPP chromosome, complete genome

Lineage: Rickettsia typhi; Rickettsia; Rickettsiaceae; Rickettsiales; Proteobacteria; Bacteria

General Information: This genus, like other Rickettsial organisms such as Neorickettsia and Anaplasma, is composed of obligate intracellular pathogens. The latter is composed of two organisms, Rickettsia prowazekii and Rickettsia typhi. The bacteria are transmitted via an insect, usually a tick, to a host organism, in this case humans, where they target endothelial cells and sometimes macrophages. They attach via an adhesin, rickettsial outer membrane protein A, and are internalized where they persist as cytoplasmically free organisms. Transovarial transmission (from mother to offspring) occurs in the invertebrate host. This organism causes murine typhus and is an obligate intracellular pathogen that infects both the flea vector and hosts such as human, rat, and mouse. R. prowazekii, and genomic comparisons demonstrate colinearity and similarity to the genome of that organism except for two independent inversions near the origin and terminus. In the flea vector, the bacterium penetrates the gut epithelial barrier and is found in the feces which become infective.

- Sequence; - BLASTP hit: hover for score (Low score = Light, High score = Dark);
- hypothetical protein; - cds: hover for description

BLASTP Alignment.txt

Subject: NC_007618:1593886 Brucella melitensis biovar Abortus 2308 chromosome I, complete

Lineage: Brucella abortus; Brucella; Brucellaceae; Rhizobiales; Proteobacteria; Bacteria

General Information: This strain is a standard laboratory strain. It is virulent for humans and cattle. Causes bovine brucellosis. They are highly infectious, and can be spread through contact with infected animal products or through the air, making them a potential bioterrorism agent. Once the organism has entered the body, it can become intracellular, and enter the blood and lymphatic regions, multiplying inside phagocytes before eventually causing bacteremia (spread of bacteria through the blood). Virulence may depend on a type IV secretion system which may promote intracellular growth by secreting important effector molecules. This organism was first noticed on the island of Malta. It is the primary cause of bovine brucellosis, which results in enormous (billions of dollars) economic losses due primarily to reproductive failure and food losses. In man, it causes undulant fever, a long debilitating disease that is treated by protracted administration of antibiotics.