Pre_GI: SWBIT SVG BLASTP

Query: NC_017044:278500 Rickettsia parkeri str. Portsmouth chromosome, complete genome

Lineage: Rickettsia parkeri; Rickettsia; Rickettsiaceae; Rickettsiales; Proteobacteria; Bacteria

General Information: Animal pathogen in Mammalia (intracellular obligate). Rickettsiae are obligate intracellular Gram-negative bacteria mostly found in arthropods, some of which cause mild to severe diseases in humans. Rickettsia parkeri, a member of the spotted fever group Rickettsia (SFGR), was first isolated from the Gulf Coast tick, Amblyomma maculatum, in 1937. In 2004, the first confirmed human infection with R. parkeri was reported in a 40-year-old man from the Tidewater area of coastal Virginia. The agent was isolated in cell culture from an eschar biopsy specimen and designated the Portsmouth strain; recently, the first recognized case of tick bite-associated human infection was described.

- Sequence; - BLASTP hit: hover for score (Low score = Light, High score = Dark);
- hypothetical protein; - cds: hover for description

BLASTP Alignment.txt

Subject: NC_005810:3493607 Yersinia pestis biovar Microtus str. 91001, complete genome

Lineage: Yersinia pestis; Yersinia; Enterobacteriaceae; Enterobacteriales; Proteobacteria; Bacteria

General Information: Causative agent of plague. Specific virulence factors are encoded within pathogenicity islands (PAIs) that are required for the invasive phenotype associated with Yersinia infections. One key virulence plasmid contained by the three human-specific pathogens is pCD1/pYv, which encodes a type III secretion system for the delivery of virulence proteins that contribute to internalization into the host cell. It is the causative agent of plague (bubonic and pulmonary) a devastating disease which has killed millions worldwide. The organism can be transmitted from rats to humans through the bite of an infected flea or from human-to-human through the air during widespread infection. Yersinia pestis is an extremely pathogenic organism that requires very few numbers in order to cause disease, and is often lethal if left untreated. The organism is enteroinvasive, and can survive and propagate in macrophages prior to spreading systemically throughout the host. Yersinia pestis consists of three biotypes or serovars, Antiqua, Mediavalis, and Orientalis, that are associated with three major pandemics throughout human history. pMT1 encodes a protein, murine toxin, that aids rat-to-human transmission by enhancing survival of the organism in the flea midgut. Yersinia pestis also contains a PAI on the chromosome that is similar to the SPI-2 PAI from Salmonella that allows intracellular survival in the organism.