Pre_GI: SWBIT SVG BLASTP

Query: NC_016933:400790 Francisella tularensis TIGB03 chromosome, complete genome

Lineage: Francisella tularensis; Francisella; Francisellaceae; Thiotrichales; Proteobacteria; Bacteria

General Information: This organism was first identified by Edward Francis as the causative agent of a plague-like illness that affected squirrels in Tulare county in California in the early part of the 20th century. The organism now bears his name. The disease, which has been noted throughout recorded history, can be transmitted to humans by infected ticks or deerflies, infected meat, or by aerosol, and thus is a potential bioterrorism agent. This organism has a high infectivity rate, and can invade phagocytic and nonphagocytic cells, multiplying rapidly. Once within a macrophage, the organism can escape the phagosome and live in the cytosol. It is an aquatic organism, and can be found living inside protozoans, similar to what is observed with Legionella.

- Sequence; - BLASTP hit: hover for score (Low score = Light, High score = Dark);
- hypothetical protein; - cds: hover for description

BLASTP Alignment.txt

Subject: NC_011184:2723000 Vibrio fischeri MJ11 chromosome I, complete sequence

Lineage: Aliivibrio fischeri; Aliivibrio; Vibrionaceae; Vibrionales; Proteobacteria; Bacteria

General Information: This strain was isolated from a pinecone fish, Monocentris japonica, light-emitting organs in Japan. This genus is abundant in marine or freshwater environments such as estuaries, brackish ponds, or coastal areas; regions that provide an important reservoir for the organism in between outbreaks of the disease. Vibrio can affect shellfish, finfish, and other marine animals and a number of species are pathogenic for humans. This organism is found in marine environments and was originally named by Bernard Fischer during a sea voyage in the 1800s. It is a symbiont in fish and squids and is responsible for light generation in those organisms, which use it as a defense mechanism to avoid predators.