Pre_GI: SWBIT SVG BLASTP

Query: NC_016914:278500 Rickettsia rickettsii str. Hino chromosome, complete genome

Lineage: Rickettsia rickettsii; Rickettsia; Rickettsiaceae; Rickettsiales; Proteobacteria; Bacteria

General Information: This genus, like other Rickettsial organisms such as Neorickettsia and Anaplasma, are obligate intracellular pathogens and is composed of two groups, the spotted fever group, and the typhus group. The latter is composed of two organisms, Rickettsia prowazekii and Rickettsia typhi. The bacteria are transmitted via an insect, usually a tick, to a host organism, in this case humans, where they target endothelial cells and sometimes macrophages. They attach via an adhesin, rickettsial outer membrane protein A, and are internalized where they persist as cytoplasmically free organisms. This organism was first identified by Dr. Howard Rickets as the causative agent of Rocky Mountain Spotted Fever, which was originally named for its geographic distribution at the time, it is now known to be widespread throughout the North American continent. This bacterium is an obligate intracellular pathogen that infects primarily the vascular endothelium, and occasionally smooth muscle tissue. This bacterium is an obligate intracellular pathogen that infects primarily the vascular endothelium, and occasionally smooth muscle tissue. It is passed to the human host from a tick bite, and the tick acts as both a natural reservoir and a vector for disease transmission. Once the organism is endocytosed by the host cell, it quickly escapes the phagozome, and replicates intracellularly, causing cell death and tissue damage. The disease is characterized by a spotted rash and has a high mortality rate if left untreated.

- Sequence; - BLASTP hit: hover for score (Low score = Light, High score = Dark);
- hypothetical protein; - cds: hover for description

BLASTP Alignment.txt

Subject: NC_010572:4585500 Streptomyces griseus subsp. griseus NBRC 13350, complete genome

Lineage: Streptomyces griseus; Streptomyces; Streptomycetaceae; Actinomycetales; Actinobacteria; Bacteria

General Information: Soil bacterium producing an antituberculosis agent. The characteristic earthy smell of freshly plowed soil is actually attributed to the aromatic terpenoid geosmin produced by species of Streptomyces. There are currently 364 known species of this genus, many of which are the most important industrial producers of antibiotics and other secondary metabolites of antibacterial, antifungal, antiviral, and antitumor nature, as well as immunosuppressants, antihypercholesterolemics, etc. Streptomycetes are crucial in the soil environment because their diverse metabolism allows them to degrade the insoluble remains of other organisms, including recalcitrant compounds such as lignocelluloses and chitin. Streptomycetes produce both substrate and aerial mycelium. The latter shows characteristic modes of branching, and in the course of the streptomycete complex life cycle, these hyphae are partly transformed into chains of spores, which are often called conidia or arthrospores. An important feature in Streptomyces is the presence of type-I peptidoglycan in the cell walls that contains characteristic interpeptide glycine bridges. Another remarkable trait of streptomycetes is that they contain very large (~8 million base pairs which is about twice the size of most bacterial genomes) linear chromosomes with distinct telomeres. These rearrangements consist of the deletion of several hundred kilobases, often associated with the amplification of an adjacent sequence, and lead to metabolic diversity within the Streptomyces group. Sequencing of several strains of Streptomyces is aimed partly on understanding the mechanisms involved in these diversification processes.