Pre_GI: SWBIT SVG BLASTP

Query: NC_016894:3329562 Acetobacterium woodii DSM 1030 chromosome, complete genome

Lineage: Acetobacterium woodii; Acetobacterium; Eubacteriaceae; Clostridiales; Firmicutes; Bacteria

General Information: Acetobacterium woodii is a Gram positive, motile, strict anaerobic, acetogenic bacterium, that relies on Na+ as coupling ion in bioenergetic reactions. The organism can use a wide range of substrates, such as sugars, alcohols, methoxylated aromatic acids or C1 compounds. Electrons derived from these electron donors are used in the Wood-Ljungdahl-pathway where the organism fixes CO2 and produces acetate. The pathway of CO2-fixation is coupled to energy conservation via a chemiosmotic mechanism, one enzyme that seems to be involved is the Rnf complex. The produced Na+ gradient can be used to drive ATP-synthesis or flagella rotation. The ATP synthase is a member of the F1FO class of enzymes and has an unusual hybrid rotor. Can use alternative electron acceptors like the lignin degradation product caffeate.

- Sequence; - BLASTP hit: hover for score (Low score = Light, High score = Dark);
- hypothetical protein; - cds: hover for description

BLASTP Alignment.txt

Subject: NC_008789:350650 Halorhodospira halophila SL1, complete genome

Lineage: Halorhodospira halophila; Halorhodospira; Ectothiorhodospiraceae; Chromatiales; Proteobacteria; Bacteria

General Information: Halorhodospira halophila SL1 was isolated from salt lake mud. Sulfur-oxidizing extreme halophile. This organism, formerly Ectothiorhodospira halophila is alkaliphilic, phototrophic, halophile. This is one of the most halophilic eubacteria known, and produces organic solutes such as glycine betaine, ectoine, and trehalose to balance the osmotic pressure. This organism oxidizes sulfide to sulfur, which is deposited outside the cell and further oxidized to sulfate. This organism also produces a blue light sensor called photoactive yellow protein which is involved in signal transduction.