Pre_GI: SWBIT SVG BLASTP

Query: NC_016830:81382 Pseudomonas fluorescens F113 chromosome, complete genome

Lineage: Pseudomonas fluorescens; Pseudomonas; Pseudomonadaceae; Pseudomonadales; Proteobacteria; Bacteria

General Information: This organism is a nonpathogenic saprophyte which inhabits soil, water and plant surface environments. If iron is in low supply, it produces a soluble, greenish fluorescent pigment, which is how it was named. As these environmentally versatile bacteria possess the ability to degrade (at least partially) multiple different pollutants, they are studied in their use as bioremediants. Furthermore a number of strains also posses the ability to suppress agricultural pathogens like fungal infections, hence their role as biocontrol (biological disease control) agents is under examination. Bacteria belonging to the Pseudomonas group are common inhabitants of soil and water and can also be found on the surfaces of plants and animals. Pseudomonas bacteria are found in nature in a biofilm or in planktonic form. Pseudomonas bacteria are renowned for their metabolic versatility as they can grow under a variety of growth conditions and do not need any organic growth factors.

No Graph yet!

Subject: NC_010175:2925084 Chloroflexus aurantiacus J-10-fl, complete genome

Lineage: Chloroflexus aurantiacus; Chloroflexus; Chloroflexaceae; Chloroflexales; Chloroflexi; Bacteria

General Information: Chloroflexus aurantiacus J-10-fl (DSM 635) was isolated from the Hakone hot spring area in Japan. This organism is one of the deepest branching phototrophs, and has some characteristics of both green non-sulfur and purple photosynthetic bacteria. These thermophiles live in hot springs of neutral to high pH and grow in mats, typically as the lowest layer in the mat with cyanobacteria above them, or as filamentous tendrils. The bacterium grows as a photoheterotroph and consumes the organic products the cyanobacteria produce, although it can also be photoautotrophic under anaerobic conditions and chemoorganotrophic under aerobic conditions. Like other green sulfur bacteria, the light-harvesting apparatus exists in chlorosomes, which consists of reaction centers surround by a protein-stabilized glycolipid monolayer, at the inner surface of the cytoplasmic membrane, although the reaction centers are more similar to the type II systems found in cyanobacteria than the type I systems found in green-sulfur bacteria. The multicellular filaments this organism produces are capable of gliding motility.