Pre_GI: SWBIT SVG BLASTP

Query: NC_016830:2247789 Pseudomonas fluorescens F113 chromosome, complete genome

Lineage: Pseudomonas fluorescens; Pseudomonas; Pseudomonadaceae; Pseudomonadales; Proteobacteria; Bacteria

General Information: This organism is a nonpathogenic saprophyte which inhabits soil, water and plant surface environments. If iron is in low supply, it produces a soluble, greenish fluorescent pigment, which is how it was named. As these environmentally versatile bacteria possess the ability to degrade (at least partially) multiple different pollutants, they are studied in their use as bioremediants. Furthermore a number of strains also posses the ability to suppress agricultural pathogens like fungal infections, hence their role as biocontrol (biological disease control) agents is under examination. Bacteria belonging to the Pseudomonas group are common inhabitants of soil and water and can also be found on the surfaces of plants and animals. Pseudomonas bacteria are found in nature in a biofilm or in planktonic form. Pseudomonas bacteria are renowned for their metabolic versatility as they can grow under a variety of growth conditions and do not need any organic growth factors.

- Sequence; - BLASTP hit: hover for score (Low score = Light, High score = Dark);
- hypothetical protein; - cds: hover for description

BLASTP Alignment.txt

Subject: NC_010556:2773396 Exiguobacterium sibiricum 255-15, complete genome

Lineage: Exiguobacterium sibiricum; Exiguobacterium; Bacillales Family XII; Bacillales; Firmicutes; Bacteria

General Information: This organism was isolated from a 2-3 million-year permafrost core in Siberia, Russia and can survive and grow rapidly at low temperatures. Analysis of long-term survival of psychrophilic organisms such as this one may aid understanding of the potential growth of organisms in astrobiology. Exiguobacterium sibiricum is a psychrotolerant organism able to grow at temperatures that range from -6 to 40 degrees C. This organism is also able to survive repeated freeze/thaw cycles which may contribute to its ability to survive in cold environments.