Pre_GI: SWBIT SVG BLASTP

Query: NC_016822:4889656 Shigella sonnei 53G, complete genome

Lineage: Shigella sonnei; Shigella; Enterobacteriaceae; Enterobacteriales; Proteobacteria; Bacteria

General Information: This genus is named for the Japanese scientist (Shiga) who first discovered these organisms in the 1890s. They are closely related to the Escherichia group, and may be considered the same species. These organisms are human-specific pathogens that are transmitted via contaminated food and water and are the leading causes of endemic bacillary dysentery, causing over 160 million cases of infection and 1 million deaths yearly worldwide. The bacteria infect the epithelial lining of the colon, causing acute inflammation by entering the host cell cytoplasm and spreading intercellularly. are extremely virulent organisms that can cause an active infection after a very low exposure. Both the type III secretion system, which delivers effector molecules into the host cell, and some of the translocated effectors such as the invasion plasmid antigens (Ipas), are encoded on the plasmid. The bacterium produces a surface protein that localizes to one pole of the cell (IcsA) which binds to and promotes actin polymerization, resulting in movement of the bacterium through the cell cytoplasm, and eventually to neighboring cells, which results in inflammatory destruction of the mucosal lining. This organism is the leading cause of dysentery in industrialized countries. The disease is usually less severe than other types of Shigella, causing mild diarrhea and dehydration.

- Sequence; - BLASTP hit: hover for score (Low score = Light, High score = Dark);
- hypothetical protein; - cds: hover for description

BLASTP Alignment.txt

Subject: NC_012962:4591295 Photorhabdus asymbiotica, complete genome

Lineage: Photorhabdus asymbiotica; Photorhabdus; Enterobacteriaceae; Enterobacteriales; Proteobacteria; Bacteria

General Information: This strain is a North American clinical isolate from human blood. Photorhabdus asymbiota, formerly Xenorhabdus luminescens, has been isolated from human wound and blood infections often in association with spider bites. This species can also be isolated from the entomopathogenic nematode Heterorhabditis indica. Photorhabdus asymbiota is divided into two subspecies, subsp. australis which contains the Australian clinical isolates and subsp. asymbiota which contains the North American isolates. Photorhabdus is currently subdivided into three species, luminescens, temperate and asymbiotica all of which have been isolated as symbionts of heterorhabditid nematodes. This organism is unusual in that it is symbiotic within one insect, and pathogenic in another, the only organism that is known to exhibit this dual phenotype.