Pre_GI: SWBIT SVG BLASTP

Query: NC_016803:1027017 Desulfovibrio desulfuricans ND132 chromosome, complete genome

Lineage: Desulfovibrio desulfuricans; Desulfovibrio; Desulfovibrionaceae; Desulfovibrionales; Proteobacteria; Bacteria

General Information: Desulfovibrio species are sulfate-reducing bacteria which reduce sulfate to sulfide and are found in soil, freshwater, saltwater and the intestinal tract of animals. These organisms grow anaerobically and utilize a wide variety of electron acceptors, including sulfate, sulfur, nitrate, and nitrite, as well as others. A number of toxic metals are reduced, including uranium (VI), chromium (VI) and iron (III), making these organisms of interest as bioremediators. These organisms are responsible for the production of poisonous hydrogen sulfide gas in marine sediments and in terrestrial environments such as drilling sites for petroleum products.

- Sequence; - BLASTP hit: hover for score (Low score = Light, High score = Dark);
- hypothetical protein; - cds: hover for description

BLASTP Alignment.txt

Subject: NC_008027:2909000 Pseudomonas entomophila L48, complete genome

Lineage: Pseudomonas entomophila; Pseudomonas; Pseudomonadaceae; Pseudomonadales; Proteobacteria; Bacteria

General Information: Bacteria belonging to the Pseudomonas group are common inhabitants of soil and water and can also be found on the surfaces of plants and animals. Pseudomonas bacteria are found in nature in a biofilm or in planktonic form. Pseudomonas bacteria are renowned for their metabolic versatility as they can grow under a variety of growth conditions and do not need any organic growth factors. This organism is highly pathogenic for a variety of insects in both larvae and adults. It was isolated from fruit flies and decaying fruits taken from a sample set obtained from the Island of Guadeloupe and tested for induction of a systemic immune response in Drosophila. Destruction of the insect gut tissue occurs during infection.Analysis of the proteins encoded by the genome indicated a number of potential virulence factors, although a type III secretion system was not found.