Pre_GI: SWBIT SVG BLASTP

Query: NC_016516:1345840 Propionibacterium acnes TypeIA2 P.acn33 chromosome, complete

Lineage: Propionibacterium acnes; Propionibacterium; Propionibacteriaceae; Actinomycetales; Actinobacteria; Bacteria

General Information: This bacterium is the most common gram-positive, non-spore forming, anaerobic rod encountered in clinical specimens. The causative agent of acne, it typically grows as an obligate anaerobe. Some strains are aerotolerant, but still show better growth as an anaerobe. It has the ability to produce propionic acid, as its name suggests. It also has the ability to produce catalase along with indole, nitrate, or both indole and nitrate. Propionibacterium resembles Corynebacterium in morphology and arrangement, but is non-toxigenic. It is a common resident of the pilosebaceous (hair follicle) glands of the human skin. The bacteria release lipases to digest a surplus of the skin oil, sebum, that has been produced. The combination of digestive products (fatty acids) and bacterial antigens stimulates an intense local inflammation that bursts the hair follicle. Since acne is caused in part from an infection, it can be suppressed with topical and oral antibiotics such as clindamycin, erythromycin, or tetracycline. Some other forms of therapy include chemicals that enhance skin removal or slow the production of sebum.

- Sequence; - BLASTP hit: hover for score (Low score = Light, High score = Dark);
- hypothetical protein; - cds: hover for description

BLASTP Alignment.txt

Subject: NC_008358:2808299 Hyphomonas neptunium ATCC 15444, complete genome

Lineage: Hyphomonas neptunium; Hyphomonas; Hyphomonadaceae; Rhodobacterales; Proteobacteria; Bacteria

General Information: Marine member of dimorphic prosthecate bacteria. This organism is also known as Hyphomicrobium neptunium. It has a biphasic life style, which consists of a motile phase of flagellated swarmer cells, and a cessile phase in which a long prosthecate is produced at one end of the bacteria through which budding cells emerge. Newly budded cells in turn produce flagella and go through a motile phase and the cycle continues. These organisms can colonize the surfaces of marine environments which enables additional species to colonize at later stages. This organism may be of use in treatment of water as they attach to a solid surface and are capable of degradation of a number of pollutants including aromatic hydrocarbons, dimethyl sulfoxide and methyl chloride.