Pre_GI: SWBIT SVG BLASTP

Query: NC_016513:1126263 Aggregatibacter actinomycetemcomitans ANH9381 chromosome, complete

Lineage: Aggregatibacter actinomycetemcomitans; Aggregatibacter; Pasteurellaceae; Pasteurellales; Proteobacteria; Bacteria

General Information: Aggregatibacter actinomycetemcomitans, previously Actinobacillus actinomycetemcomitans typically resides in the oral cavity of humans and animals and can cause a number of diseases. The bacterium, along with 3 other organisms, is the main culprit in periodontis, which results in devastation to the bone supporting the teeth. Adherence to oral surfaces is controlled through the tad (tight adherence) locus, which may express proteins that are involved in type IV secretion.

No Graph yet!

Subject: NC_008463:4566976 Pseudomonas aeruginosa UCBPP-PA14, complete genome

Lineage: Pseudomonas aeruginosa; Pseudomonas; Pseudomonadaceae; Pseudomonadales; Proteobacteria; Bacteria

General Information: This strain is a human clinical isolate from a human burn patient. It is infectious in mice, Caenorhabditis elegans, Drosophila melanogaster, and Arabidopsis thaliana. Opportunistic pathogen. Bacteria belonging to the Pseudomonas group are common inhabitants of soil and water and can also be found on the surfaces of plants and animals. Pseudomonas bacteria are found in nature in a biofilm or in planktonic form. Pseudomonas bacteria are renowned for their metabolic versatility as they can grow under a variety of growth conditions and do not need any organic growth factors. This organism is an opportunistic human pathogen. While it rarely infects healthy individuals, immunocompromised patients, like burn victims, AIDS-, cancer- or cystic fibrosis-patients are at increased risk for infection with this environmentally versatile bacteria. It is an important soil bacterium with a complex metabolism capable of degrading polycyclic aromatic hydrocarbons, and producing interesting, biologically active secondary metabolites including quinolones, rhamnolipids, lectins, hydrogen cyanide, and phenazines. Production of these products is likely controlled by complex regulatory networks making Pseudomonas aeruginosa adaptable both to free-living and pathogenic lifestyles. The bacterium is naturally resistant to many antibiotics and disinfectants, which makes it a difficult pathogen to treat.