Pre_GI: SWBIT SVG BLASTP

Query: NC_015978:352478 Lactobacillus sanfranciscensis TMW 1.1304 chromosome, complete

Lineage: Lactobacillus sanfranciscensis; Lactobacillus; Lactobacillaceae; Lactobacillales; Firmicutes; Bacteria

General Information: This is the characteristic organism in wheat sourdough. They are commonly found in the oral, vaginal, and intestinal regions of many animals. They are important industrial microbes that contribute to the production of cheese, yogurt, and other products such as fermented milks, all stemming from the production of lactic acid, which inhibits the growth of other organisms as well as lowering the pH of the food product. Industrial production requires the use of starter cultures, which are carefully cultivated, created, and maintained, which produce specific end products during fermentation that impart flavor to the final product, as well as contributing important metabolic reactions, such as the breakdown of milk proteins during cheese production. The end product of fermentation, lactic acid, is also being used as a starter molecule for complex organic molecule syntheses.

- Sequence; - BLASTP hit: hover for score (Low score = Light, High score = Dark);
- hypothetical protein; - cds: hover for description

BLASTP Alignment.txt

Subject: NC_007426:205390 Natronomonas pharaonis DSM 2160, complete genome

Lineage: Natronomonas pharaonis; Natronomonas; Halobacteriaceae; Halobacteriales; Euryarchaeota; Archaea

General Information: Isolated from Lake Gabara in Egypt. Extreme haloalkaliphilic archeon. Natronomonas pharaonis is able to survive at high salt and pH conditions which results in limited nitrogen availability through ammonium. In order to compensate for this, Natronomonas pharaonis has developed three systems to promote nitrogen assimilation: direct uptake of ammonia, uptake of nitrate, and uptake of urea. Another problem with high pH environments is the use of a proton gradient for the generation of ATP, which other alkaliphiles have adapted to by substitution of sodium ions for protons. However, this organism utilizes protons for ATP generation as determined by experimental data.