Query: NC_015975:1936504 Lactobacillus ruminis ATCC 27782 chromosome, complete genome
Lineage: Lactobacillus ruminis; Lactobacillus; Lactobacillaceae; Lactobacillales; Firmicutes; Bacteria
General Information: This organism was isolated from bovine rumen. They are commonly found in the oral, vaginal, and intestinal regions of many animals. They are important industrial microbes that contribute to the production of cheese, yogurt, and other products such as fermented milks, all stemming from the production of lactic acid, which inhibits the growth of other organisms as well as lowering the pH of the food product. Industrial production requires the use of starter cultures, which are carefully cultivated, created, and maintained, which produce specific end products during fermentation that impart flavor to the final product, as well as contributing important metabolic reactions, such as the breakdown of milk proteins during cheese production. The end product of fermentation, lactic acid, is also being used as a starter molecule for complex organic molecule syntheses.
Subject: NC_010410:513298 Acinetobacter baumannii AYE, complete genome
Lineage: Acinetobacter baumannii; Acinetobacter; Moraxellaceae; Pseudomonadales; Proteobacteria; Bacteria
General Information: This strain is responsible for community-acquired infections and is highly resistant to antibiotics. This bacterium is commonly isolated from the hospital environment and hospitalized patients. It is an aquatic organism, and is often cultured from liquid medical samples such as respiratory secretions, wounds, and urine. Acinetobacter also colonizes irrigating solutions and intravenous solutions. Although it has low virulence, it is capable of causing infection. Most isolates recovered from patients represent colonization rather than infection. When infections do occur, they usually occur in the blood, or in organs with a high fluid content, such as the lungs or urinary tract. Infections by this organism are becoming increasingly problematic due to the high number of resistance genes found in clinical isolates. Some strains are now resistant to all known antibiotics. Most of these genes appear to have been transferred horizontally from other organisms.