Pre_GI: SWBIT SVG BLASTP

Query: NC_015930:18969 Lactococcus garvieae ATCC 49156, complete genome

Lineage: Lactococcus garvieae; Lactococcus; Streptococcaceae; Lactobacillales; Firmicutes; Bacteria

General Information: Lactococcus garviae is responsible for mastitis in cows and buffalos, and it has been isolated from clinical specimens of human blood, urine, and skin. Lactococcus garvieae is also a well recognized bacterial fish pathogen. L. garvieae as the etiological agent of a hemorrhagic septicemia in farmed trout that was characterized by bilateral exophthalmos, darkening of the skin, congestion of the intestine, liver, kidney, spleen, and brain.

- Sequence; - BLASTP hit: hover for score (Low score = Light, High score = Dark);
- hypothetical protein; - cds: hover for description

BLASTP Alignment.txt

Subject: NC_015709:1769806 Zymomonas mobilis subsp. pomaceae ATCC 29192 chromosome, complete

Lineage: Zymomonas mobilis; Zymomonas; Sphingomonadaceae; Sphingomonadales; Proteobacteria; Bacteria

General Information: Country: United Kingdom; Isolation: Sick cider; Temp: Mesophile. The natural habitat of this organism includes sugar-rich plant saps where the bacterium ferments sugar to ethanol. The high conversion of sugars to ethanol makes this organism useful in industrial production systems, particularly in production of bioethanol for fuel. A recombinant strain of this bacterium is utilized for the conversion of sugars, particularly xylose, which is not utilized by another common sugar-fermenting organism such as yeast, to ethanol. Since xylose is a common breakdown product of cellulose or a waste component of the agricultural industry, it is an attractive source for ethanol production. Zymomonas mobilis was chosen for this process as it is ethanol-tolerant (up to 120 grams of ethanol per litre) and productive (5-10% more ethanol than Saccharomyces). This bacterium ferments using the Enter-Doudoroff pathway, with the result that less carbon is used in cellular biomass production and more ends up as ethanol, another factor that favors this organism for ethanol production.