Pre_GI: SWBIT SVG BLASTP

Query: NC_015723:1486000 Cupriavidus necator N-1 chromosome 2, complete sequence

Lineage: Cupriavidus necator; Cupriavidus; Burkholderiaceae; Burkholderiales; Proteobacteria; Bacteria

General Information: Cupriavidus necator also known as Ralstonia eutropha is a soil bacterium with diverse metabolic abilities. Strains of this organism are resistant to high levels of copper or are able to degrade chloroaromatic compounds such as halobenzoates and nitrophenols making them useful for bioremediation. Other strains have been studied for their ability to produce polyhydroxybutyrates which have industrial application. Another strain is able to attack other bacteria and fungi when nutrients in the soil are low.

- Sequence; - BLASTP hit: hover for score (Low score = Light, High score = Dark);
- hypothetical protein; - cds: hover for description

BLASTP Alignment.txt

Subject: NC_008258:1784637 Shigella flexneri 5 str. 8401, complete genome

Lineage: Shigella flexneri; Shigella; Enterobacteriaceae; Enterobacteriales; Proteobacteria; Bacteria

General Information: This genus is named for the Japanese scientist (Shiga) who discovered them in the 1890s. They are closely related to the Escherichia group, and may be considered the same species. Shigella spp. are human-specific pathogens that are transmitted via contaminated food and water and are the leading causes of endemic bacillary dysentery, and over 1 million deaths worldwide are attributed to them. The bacteria infect the epithelial lining of the colon, causing acute inflammation by entering the host cell cytoplasm and spreading intercellularly. are extremely virulent organisms that require very few cells in order to cause disease. Both the type III secretion system, which delivers effector molecules into the host cell, and some of the translocated effectors such as the invasion plasmid antigens (Ipas), are encoded on the plasmid. The bacterium produces a surface protein that localizes to one pole of the cell (IcsA) which binds to and promotes actin polymerization, resulting in movement of the bacterium through the cell cytoplasm, and eventually to neighboring cells, which results in inflammatory destruction of the mucosal lining. This organism, along with Shigella sonnei, is the major cause of shigellosis in industrialized countries and is responsible for endemic infections.