Pre_GI: SWBIT SVG BLASTP

Query: NC_015690:8019859 Paenibacillus mucilaginosus KNP414 chromosome, complete genome

Lineage: Paenibacillus mucilaginosus; Paenibacillus; Paenibacillaceae; Bacillales; Firmicutes; Bacteria

General Information: Paenibacillus mucilaginosus is critical silicate bacteria in the biogeochemical cycling of potassium, phosphorus, and other soil elements, and is widely used in agriculture, bioleaching, and wastewater treatment. P. mucilaginosus is able to degrade insoluble soil minerals with the release of nutritional ions and fix nitrogen, and thus it has been successfully used as a biofertilizer since the 1990s. The exocellular polysaccharides produced by P. mucilaginosus is also an effective bioflocculant, and thus plays a potential role in the treatment of wastewater and biohydrometallurgy.

No Graph yet!

Subject: NC_006396:1097000 Haloarcula marismortui ATCC 43049 chromosome I, complete sequence

Lineage: Haloarcula marismortui; Haloarcula; Halobacteriaceae; Halobacteriales; Euryarchaeota; Archaea

General Information: This organism was isolated from the Dead Sea and will provide information on the proteins necessary for adaptation to a high salt environment. Halophilic archaeon. Halobacterial species are obligately halophilic microorganisms that have adapted to optimal growth under conditions of extremely high salinity 10 times that of sea water. They contain a correspondingly high concentration of salts internally and exhibit a variety of unusual and unique molecular characteristics. Since their discovery, extreme halophiles have been studied extensively by chemists, biochemists, microbiologists, and molecular biologists to define both molecular diversity and universal features of life. A notable list of early research milestones on halophiles includes the discovery of a cell envelope composed of an S-layer glycoprotein, archaeol ether lipids and purple membrane, and metabolic and biosynthetic processes operating at saturating salinities. These early discoveries established the value of investigations directed at extremophiles and set the stage for pioneering phylogenetic studies leading to the three-domain view of life and classification of Halobacterium as a member of the archaeal domain. This organism is also know as "Halobacterium of the Dead Sea". Growth occurs in 1.7-5.1 M NaCl with optimum salt concentration of 3.4-3.9 M NaCl. The cytosol of this organism is a supersaturated salt solution in which proteins are soluble and active. This halophile is chemoorganotrophic and able to use a wide variety of compounds as sole carbon and energy sources.