Pre_GI: SWBIT SVG BLASTP

Query: NC_015680:1475917 Pyrococcus yayanosii CH1 chromosome, complete genome

Lineage: Pyrococcus yayanosii; Pyrococcus; Thermococcaceae; Thermococcales; Euryarchaeota; Archaea

General Information: Pyrococcus yayanosii CH1 is the first obligate piezophilic hyperthermophilic archaeon isolated from the deep-sea hydrothermal site Ashadze on the mid-Atlantic ridge at a depth of 4,100 m. This organism grows within a temperature range of 80 to 108 degrees C and a hydrostatic pressure range of 20 to 120 MPa, with optima at 98 degrees C and 52 MPa, respectively.

- Sequence; - BLASTP hit: hover for score (Low score = Light, High score = Dark);
- hypothetical protein; - cds: hover for description

BLASTP Alignment.txt

Subject: NC_007576:1564739 Lactobacillus sakei subsp. sakei 23K, complete genome

Lineage: Lactobacillus sakei; Lactobacillus; Lactobacillaceae; Lactobacillales; Firmicutes; Bacteria

General Information: This strain (23K) was originally isolated from a French sausage. They are commonly found in the oral, vaginal, and intestinal regions of many animals. They are important industrial microbes that contribute to the production of cheese, yogurt, and other products such as fermented milks, all stemming from the production of lactic acid, which inhibits the growth of other organisms as well as lowering the pH of the food product. Industrial production requires the use of starter cultures, which are carefully cultivated, created, and maintained, which produce specific end products during fermentation that impart flavor to the final product, as well as contributing important metabolic reactions, such as the breakdown of milk proteins during cheese production. The end product of fermentation, lactic acid, is also being used as a starter molecule for complex organic molecule syntheses. Lactobacillus sakei is the predominant lactic acid bacteria found on fresh meat. This organism is used as a starter in the production of fermented meat products, and plays a major role in preserving meat products by inhibiting the growth of other bacteria.