Pre_GI: SWBIT SVG BLASTP

Query: NC_014836:2325559 Desulfurispirillum indicum S5 chromosome, complete genome

Lineage: Desulfurispirillum indicum; Desulfurispirillum; Chrysiogenaceae; Chrysiogenales; Chrysiogenetes; Bacteria

General Information: Environment: Fresh water; Temp: Mesophile. This is the first cultured species of the proposed new genus "Desulfurispirillum", and the sequencing of its genome will expand the range of experimental approaches that researchers can use to characterize its metabolic pathways for energy production and understand how these pathways are regulated. This organism is notable for its ability to reduce selenate to selenite and further to insoluble elemental selenium, in a process called dissimilatory selenate reduction.

- Sequence; - BLASTP hit: hover for score (Low score = Light, High score = Dark);
- hypothetical protein; - cds: hover for description

BLASTP Alignment.txt

Subject: NC_012808:806432 Methylobacterium extorquens AM1, complete genome

Lineage: Methylobacterium extorquens; Methylobacterium; Methylobacteriaceae; Rhizobiales; Proteobacteria; Bacteria

General Information: First isolated in 1960 in Oxford, England, as an airborne contaminant growing on methylamine. This strain can grow on methylamine or methanol, but not methane. This organism is capable of growth on one-carbon compounds such as methanol. Methanol is oxidized to formaldehyde which is then used metabolically to generate either energy or biomass. These bacteria are commonly found in the environment, especially associated with plants which produce methanol when metabolizing pectin during cell wall synthesis. At least 25 genes are required for this complex process of converting methanol to formaldehyde and this specialized metabolic pathway is of great interest.