Pre_GI: SWBIT SVG BLASTP

Query: NC_014721:1953708 Caldicellulosiruptor kristjanssonii 177R1B chromosome, complete

Lineage: Caldicellulosiruptor kristjanssonii; Caldicellulosiruptor; Thermoanaerobacterales Family III; Thermoanaerobacterales; Firmicutes; Bacteria

General Information: Country: Iceland; Environment: Hot spring; Isolation: Hot spring biomat; Iceland; Temp: Thermophile. Country:Iceland. Caldicellulosiruptor kristjanssonii is able to degrade cellulose, xylan and other complex substrates. This organism is thermophilic with a growth temperature optimum of 72 degrees C.

- Sequence; - BLASTP hit: hover for score (Low score = Light, High score = Dark);
- hypothetical protein; - cds: hover for description

BLASTP Alignment.txt

Subject: NC_004061:31500 Buchnera aphidicola str. Sg (Schizaphis graminum), complete genome

Lineage: Buchnera aphidicola; Buchnera; Enterobacteriaceae; Enterobacteriales; Proteobacteria; Bacteria

General Information: This strain is the symbiont of the aphid Schizaphis graminum and contains a large circular chromosome. Aphid endosymbiont. Almost all aphids contain maternally transmitted bacteriocyte cells, which themselves contain bacteria called Buchnera. The aphids live on a restricted diet (plant sap), rich in carbohydrates, but poor in nitrogenous or other essential compounds. It is believed that the Buchnera provide the essential nutrients the host lacks. Besides a nutritional co-dependence, due to a co-existence of millions of years, Buchnera have lost the ability to produce cell surface components such as lipopolysaccharides. This makes for an obligate endosymbiont relationship between host and Buchnera. Buchnera are prokaryotic cells which belong to the gamma-Proteobacteria, closely related to the Enterobacteriaceae family. Phylogenetic studies using 16S rRNA indicate that the symbiotic relationship was established around 200-250 million years ago. Since Buchnera are closely related to Escherichia coli and Haemophilus influenzae, comparative genomic studies can shed light on the evolutionary mechanisms of intracellular endosymbiosis as well as the different underlying molecular basis between organisms with parasitic behavior and symbionts.