Pre_GI: SWBIT SVG BLASTP

Query: NC_014623:8648000 Stigmatella aurantiaca DW4/3-1 chromosome, complete genome

Lineage: Stigmatella aurantiaca; Stigmatella; Cystobacteraceae; Myxococcales; Proteobacteria; Bacteria

General Information: Social gliding soil bacterium. Stigmatella aurantica, commonly isolated from rotting wood and bark, is a member of a group of organisms called myxobacteria. These organisms have a complex development and differentiation life cycle. When cell density increases, the organism switches to "social motility" where aggregates of cells can gather together into masses termed fruiting bodies that may consist of up to 100,000 cells. Stigmatella aurantica produces a number of compounds, such as aurafuron A and stigmatellin, which may be important as anti-cancer agents.

- Sequence; - BLASTP hit: hover for score (Low score = Light, High score = Dark);
- hypothetical protein; - cds: hover for description

BLASTP Alignment.txt

Subject: NC_009664:4347718 Kineococcus radiotolerans SRS30216, complete genome

Lineage: Kineococcus radiotolerans; Kineococcus; Kineosporiaceae; Actinomycetales; Actinobacteria; Bacteria

General Information: This organism is a coccoid bacterium originally isolated from a high-level radioactive waste cell at the Savannah River Site in Aiken, South Carolina, USA, in 2002. Radiation-resistant bacterium. Similarly to Deinococcus radiodurans, K. radiotolerans exhibits a high degree of resistance to ionizing gamma-radiation. Cells are also highly resistant to dessication. Kineococcus-like 16S rRNA gene sequences have been reported from the Mojave desert and other arid environments where these bacteria seem to be ubiquitous. Because of its high resistance to ionizing radiation and desiccation, K. radiotolerans has potential use in applications involving in situ biodegradation of problematic organic contaminants from highly radioactive environments. Moreover, comparative functional genomic characterization of this species and other known radiotolerant bacteria such as Deinococcus radiodurans and Rubrobacter xylanophilus will shed light onto the strategies these bacteria use for survival in high radiation environments, as well as the evolutionary origins of radioresistance and their highly efficient DNA repair machinery. This organism produces an orange carotenoid-like pigment. Cell growth occurs between 11-41 degresss C, pH 5-9, and in the presence of <5% NaCl and <20% glucose. Carbohydrates and alcohols are primary growth substrates.