Pre_GI: SWBIT SVG BLASTP

Query: NC_014614:2500301 Clostridium sticklandii, complete genome

Lineage: Clostridium sticklandii; Clostridium; unclassified Peptostreptococcaceae; Clostridiales; Firmicutes; Bacteria

General Information: This Clostridium (HF strain, ATCC 12662) was initially found associated with Methanococcus vannieli in formate-enriched cultures. After its isolation in pure culture, it was shown that this organism is capable of fermenting amino acids. Biochemical studies have shown that C. sticklandii obtains energy for growth from oxidation-reduction reactions between specific amino acid pairs. Clostridium sticklandii is a Gram-positive bacterium with low (G +C) content that is capable of fermenting amino acids.

- Sequence; - BLASTP hit: hover for score (Low score = Light, High score = Dark);
- hypothetical protein; - cds: hover for description

BLASTP Alignment.txt

Subject: NC_004545:499709 Buchnera aphidicola str. Bp (Baizongia pistaciae), complete genome

Lineage: Buchnera aphidicola; Buchnera; Enterobacteriaceae; Enterobacteriales; Proteobacteria; Bacteria

General Information: This organism is found in the aphid Baizongia pistaciae. Aphid endosymbiont. It is believed that the Buchnera provide the essential nutrients the host lacks. Besides a nutritional co-dependence, due to a co-existence of millions of years, Buchnera have lost the ability to produce cell surface components such as lipopolysaccharides. This makes for an obligate endosymbiont relationship between host and Buchnera. Buchnera are prokaryotic cells which belong to the gamma-Proteobacteria, closely related to the Enterobacteriaceae family. Phylogenetic studies using 16S rRNA indicate that the symbiotic relationship was established around 200-250 million years ago. Since Buchnera are closely related to Escherichia coli and Haemophilus influenzae, comparative genomic studies can shed light on the evolutionary mechanisms of intracellular endosymbiosis as well as the different underlying molecular basis between organisms with parasitic behavior and symbionts.