Pre_GI: SWBIT SVG BLASTP

Query: NC_014551:691594 Bacillus amyloliquefaciens DSM 7, complete genome

Lineage: Bacillus amyloliquefaciens; Bacillus; Bacillaceae; Bacillales; Firmicutes; Bacteria

General Information: Originally isolated from infested soil in Germany. Bacillus amyloliquefaciens is a member of a group of free-living soil bacteria known to promote plant growth and suppress plant pathogens. Bacillus amyloliquefaciens is able to degrade myo-inositol hexakisphosphate (phytate), making phosphorus more available to plants. This organism also produces antifungal and antibacterial substances, such as bacillomycin D, surfactin, and bacillaene, which protect the plant from pathogenic organisms. In addition, proteases and amylases produced by Bacillus amyloliquefaciens are used in industrial applications.

- Sequence; - BLASTP hit: hover for score (Low score = Light, High score = Dark);
- hypothetical protein; - cds: hover for description

BLASTP Alignment.txt

Subject: NC_006510:372826 Geobacillus kaustophilus HTA426, complete genome

Lineage: Geobacillus kaustophilus; Geobacillus; Bacillaceae; Bacillales; Firmicutes; Bacteria

General Information: Geobacillus kaustophilus strain HTA426 was first isolated from deep sea sediment of the Mariana Trench in the Pacific Ocean and belongs to a closely related group of thermophilic Bacillus spp. Members of this genus were originally classified as Bacillus. Recent rDNA analysis and DNA-DNA hybridization studies using spore-forming thermophilic subsurface isolates provided enough evidence to define the phylogenetically distinct, physiologically and morphologically consistent taxon Geobacillus. Geobacillus species are chemo-organotrophic, obligately thermophilic, motile, spore-forming, aerobic or facultatively anaerobic. This organism was compared with mesophilic Bacillus spp. to identify genome characteristics and specific genes related to thermophilia. Analysis of the amino acid compositions showed clear differences between Geobacillus kaustophilus and the mesophilic bacilli. In addition, the higher G+C content in Geobacillus kaustophilus rRNA also appears correlated to thermophilia. In addition, tRNA modification by the Geobacillus kaustophilus specific tRNA methyltransferases probably aids in the thermoadaptation of this organism.