Pre_GI: SWBIT SVG BLASTP

Query: NC_014551:483773 Bacillus amyloliquefaciens DSM 7, complete genome

Lineage: Bacillus amyloliquefaciens; Bacillus; Bacillaceae; Bacillales; Firmicutes; Bacteria

General Information: Originally isolated from infested soil in Germany. Bacillus amyloliquefaciens is a member of a group of free-living soil bacteria known to promote plant growth and suppress plant pathogens. Bacillus amyloliquefaciens is able to degrade myo-inositol hexakisphosphate (phytate), making phosphorus more available to plants. This organism also produces antifungal and antibacterial substances, such as bacillomycin D, surfactin, and bacillaene, which protect the plant from pathogenic organisms. In addition, proteases and amylases produced by Bacillus amyloliquefaciens are used in industrial applications.

- Sequence; - BLASTP hit: hover for score (Low score = Light, High score = Dark);
- hypothetical protein; - cds: hover for description

BLASTP Alignment.txt

Subject: NC_018870:81396 Thermacetogenium phaeum DSM 12270 chromosome, complete genome

Lineage: Thermacetogenium phaeum; Thermacetogenium; Thermoanaerobacteraceae; Thermoanaerobacterales; Firmicutes; Bacteria

General Information: Nitrogen fixation. Thermophilic strictly anaerobic bacterium oxidizing acetate to CO2 in syntrophic association with a methanogenic partner. Capable of growing with various substrates such as alcohols and methylated nitrogen compounds, and to reduce sulfate in the presence of acetate. Isolated from sludge of an anaerobic digester run at 58 degrees C. Thermacetogenium phaeum is a strictly anaerobic, homoacetogenic bacterium. It is exceptional because it can use the homoacetogenic Wood-Ljungdahl (CO- dehydrogenase) pathway both for acetate formation and acetate oxidation. Acetate oxidation is possible only in syntrophic cooperation with a methanogenic partner which maintains a low hydrogen and/or formate concentration in the coculture. With this, the bacterium operates close to the thermodynamic equilibrium of substrate conversion, similar to other syntrophically fermenting bacteria such as Syntrophomonas wolfei the genomes of which have been sequenced as well in the recent past.