Pre_GI: SWBIT SVG BLASTP

Query: NC_014313:165490 Hyphomicrobium denitrificans ATCC 51888 chromosome, complete

Lineage: Hyphomicrobium denitrificans; Hyphomicrobium; Hyphomicrobiaceae; Rhizobiales; Proteobacteria; Bacteria

General Information: Environment: Fresh water; Temp: Mesophile. An aerobic, motile Gram-negative bacterium. Hyphomicrobium denitrificans has a biphasic life style, which consists of a motile phase of flagellated swarmer cells, and a cessile phase in which a long prosthecate is produced at one end of the bacteria through which budding cells emerge. Newly budded cells in turn produce flagella and go through a motile phase and the cycle continues. These organisms can colonize the surfaces of marine environments which enables additional species to colonize at later stages. This organism is also able to utilize methanol as a sole source of energy.

- Sequence; - BLASTP hit: hover for score (Low score = Light, High score = Dark);
- hypothetical protein; - cds: hover for description

BLASTP Alignment.txt

Subject: NC_007348:2115152 Ralstonia eutropha JMP134 chromosome 2, complete sequence

Lineage: Cupriavidus pinatubonensis; Cupriavidus; Burkholderiaceae; Burkholderiales; Proteobacteria; Bacteria

General Information: This organism is found in both soil and water and has great potential for use in bioremediation as it is capable of degrading a large list of pollutants including chlorinated aromatic compounds. The bacterium can utilize hydrogen, carbon dioxide, as well as organic compounds for growth and is a model organism for hydrogen oxidation as it can grow on hydrogen as the sole energy source. It was originally isolated due to its ability to degrade the herbicide 2,4-dichlorophenoxyacetic acid, which is due to the degradative functions being encoded on a plasmid (pJP4). Metabolically versatile bacterium. Cupriavidus necator also known as Ralstonia eutropha is a soil bacterium with diverse metabolic abilities. Strains of this organism are resistant to high levels of copper or are able to degrade chloroaromatic compounds such as halobenzoates and nitrophenols making them useful for bioremediation.