Pre_GI: SWBIT SVG BLASTP

Query: NC_014169:1740243 Bifidobacterium longum subsp. longum JDM301 chromosome, complete

Lineage: Bifidobacterium longum; Bifidobacterium; Bifidobacteriaceae; Bifidobacteriales; Actinobacteria; Bacteria

General Information: Representatives of this genus naturally colonize the human gastrointestinal tract (GIT) and are important for establishing and maintaining homeostasis of the intestinal ecosystem to allow for normal digestion. Their presence has been associated with beneficial health effects, such as prevention of diarrhea, amelioration of lactose intolerance, or immunomodulation. The stabilizing effect on GIT microflora is attributed to the capacity of bifidobacteria to produce bacteriocins, which are bacteriostatic agents with a broad spectrum of action, and to their pH-reducing activity. Most of the ~30 known species of bifidobacteria have been isolated from the mammalian GIT, and some from the vaginal and oral cavity. All are obligate anaerobes belonging to the Actinomycetales, branch of Gram-positive bacteria with high GC content that also includes Corynebacteria, Mycobacteria, and Streptomycetes. This organism is found in adult humans and formula fed infants as a normal component of gut flora.

- Sequence; - BLASTP hit: hover for score (Low score = Light, High score = Dark);
- hypothetical protein; - cds: hover for description

BLASTP Alignment.txt

Subject: NC_008700:3692333 Shewanella amazonensis SB2B, complete genome

Lineage: Shewanella amazonensis; Shewanella; Shewanellaceae; Alteromonadales; Proteobacteria; Bacteria

General Information: Isolated from shallow marine deposits (coastal shelf mud) of the Amazon River delta off of the coast of Brazil. Iron-reducing bacterium. This genus includes species that inhabit a wide range of environments and are capable of utilizing a wide variety of electron acceptors during anaerobic respiration including some insoluble metal oxides while using very few carbon sources such as lactate or acetate. This group of organisms have been studied extensively for their electron transport systems. Shewanella amazonensis is capable of anaerobically reducing iron, manganese, and sulfur compounds and may be important to the cycling of these compounds in the environment.