Pre_GI: SWBIT SVG BLASTP

Query: NC_014121:489500 Enterobacter cloacae subsp. cloacae ATCC 13047 chromosome, complete

Lineage: Enterobacter cloacae; Enterobacter; Enterobacteriaceae; Enterobacteriales; Proteobacteria; Bacteria

General Information: Enterobacter species are found in natural environments such as water, sewage, soil, and vegetables; some species are found in human and animal species. Enterobacter cloacae is a prevalent nosocomial pathogen as it is highly resistant to disinfectants and antimicrobial agents. E.cloacae subsp. cloacae strain ATCC 13047 was isolated from human cerebrospinal fluid in 1890 and is the type strain. These "ICU bugs" cause significant morbidity and mortality, and infection management is complicated by multiple antibiotic resistance. These bacteria possess inducible beta-lactamases, which are undetectable in vitro but are also responsible for resistance during treatment.

- Sequence; - BLASTP hit: hover for score (Low score = Light, High score = Dark);
- hypothetical protein; - cds: hover for description

BLASTP Alignment.txt

Subject: NC_005126:1315474 Photorhabdus luminescens subsp. laumondii TTO1, complete genome

Lineage: Photorhabdus luminescens; Photorhabdus; Enterobacteriaceae; Enterobacteriales; Proteobacteria; Bacteria

General Information: This strain was isolated on Trinidad and Tobago. It is a symbiont of the nematode Heterorhabditis bacteriophora. Bioluminescent bacterium. This organism is unusual in that it is symbiotic within one insect, and pathogenic in another, the only organism that is known to exhibit this dual phenotype. Enzymes are then released by the bacteria that result in rapid degradation of the insect body, allowing both bacteria and nematode to feed and reproduce. During this period Photorhabdus luminescens releases bacteriocidal products, including antibiotics and bacteriocins, that prevent infection of the larva by competitive microbes. The result is promotion of Photorhabdus luminescens-nematode interactions that result in continuation of the symbiotic relationship. In order to engage in a symbiotic relationship with the nematode and a pathogenic one with the insect larva, the bacterium encodes specific factors that encourage both. These include a large number of genes that code for secreted toxins and enzymes, as well as genes that encode products for the production of antibiotics and bacteriocins. Secretion of these products occurs by an array of systems including type I, type II, and type III secretion systems. The type III system is closely related to the Yersinia plasmid-encoded type III system. Genes that promote symbiotic relationships are also encoded on genomic islands on the chromosome including some that affect nematode development. Virulence genes appear to be active during exponential growth. Symbiotic genes appear to function during stationary phase (post-exponential) growth. The switch from one state to another is controlled. Photorhabdus luminescens is capable of giving off light, a complex process that requires the products of the lux operon.