Pre_GI: SWBIT SVG BLASTP

Query: NC_014039:334892 Propionibacterium acnes SK137 chromosome, complete genome

Lineage: Propionibacterium acnes; Propionibacterium; Propionibacteriaceae; Actinomycetales; Actinobacteria; Bacteria

General Information: This bacterium is the most common gram-positive, non-spore forming, anaerobic rod encountered in clinical specimens. The causative agent of acne, it typically grows as an obligate anaerobe. Some strains are aerotolerant, but still show better growth as an anaerobe. It has the ability to produce propionic acid, as its name suggests. It also has the ability to produce catalase along with indole, nitrate, or both indole and nitrate. Propionibacterium resembles Corynebacterium in morphology and arrangement, but is non-toxigenic. It is a common resident of the pilosebaceous (hair follicle) glands of the human skin. The bacteria release lipases to digest a surplus of the skin oil, sebum, that has been produced. The combination of digestive products (fatty acids) and bacterial antigens stimulates an intense local inflammation that bursts the hair follicle. Since acne is caused in part from an infection, it can be suppressed with topical and oral antibiotics such as clindamycin, erythromycin, or tetracycline.

- Sequence; - BLASTP hit: hover for score (Low score = Light, High score = Dark);
- hypothetical protein; - cds: hover for description

BLASTP Alignment.txt

Subject: NC_008497:556365 Lactobacillus brevis ATCC 367, complete genome

Lineage: Lactobacillus brevis; Lactobacillus; Lactobacillaceae; Lactobacillales; Firmicutes; Bacteria

General Information: Lactic acid bacterium used in fermentation. They are commonly found in the oral, vaginal, and intestinal regions of many animals. They are important industrial microbes that contribute to the production of cheese, yogurt, fermented milks, and other products, all stemming from the production of lactic acid, which inhibits the growth of other organisms as well as lowering the pH of the food product. Industrial production requires the use of starter cultures, which are carefully created, cultivated, and maintained, which produce specific end products during fermentation that impart flavor to the final product, as well as contributing important metabolic reactions, such as the breakdown of milk proteins during cheese production. The end product of fermentation, lactic acid, is also being used as a starter molecule for complex organic molecule syntheses. This organism is used as a starter culture for various types of beer, sourdough, and silage fermentation.