Pre_GI: SWBIT SVG BLASTP

Query: NC_014039:334892 Propionibacterium acnes SK137 chromosome, complete genome

Lineage: Propionibacterium acnes; Propionibacterium; Propionibacteriaceae; Actinomycetales; Actinobacteria; Bacteria

General Information: This bacterium is the most common gram-positive, non-spore forming, anaerobic rod encountered in clinical specimens. The causative agent of acne, it typically grows as an obligate anaerobe. Some strains are aerotolerant, but still show better growth as an anaerobe. It has the ability to produce propionic acid, as its name suggests. It also has the ability to produce catalase along with indole, nitrate, or both indole and nitrate. Propionibacterium resembles Corynebacterium in morphology and arrangement, but is non-toxigenic. It is a common resident of the pilosebaceous (hair follicle) glands of the human skin. The bacteria release lipases to digest a surplus of the skin oil, sebum, that has been produced. The combination of digestive products (fatty acids) and bacterial antigens stimulates an intense local inflammation that bursts the hair follicle. Since acne is caused in part from an infection, it can be suppressed with topical and oral antibiotics such as clindamycin, erythromycin, or tetracycline.

- Sequence; - BLASTP hit: hover for score (Low score = Light, High score = Dark);
- hypothetical protein; - cds: hover for description

BLASTP Alignment.txt

Subject: NC_002932:2142000 Chlorobium tepidum TLS, complete genome

Lineage: Chlorobaculum tepidum; Chlorobaculum; Chlorobiaceae; Chlorobiales; Chlorobi; Bacteria

General Information: This green-sulfur bacterium is a thermophile and was isolated from a New Zealand high-sulfide hot spring. Photosynthetic thermophile. Chlorobium tepidum is a member of the green-sulfur bacteria. It has been suggested that the green-sulfur bacteria were among the first photosynthetic organisms since they are anaerobically photosynthetic and may have arisen early in the Earth's history when there was a limited amount of oxygen present. This organism utilizes a novel photosynthetic system, and harvests light energy using an unusual organelle, the chlorosome, which contains an aggregate of light-harvesting centers surrounded by a protein-stabilized galactolipid monolayer that lies at the inner surface of the cytoplasmic membrane. Unlike many other photosynthetic organisms, the green-sulfur bacteria do not produce oxygen and tolerate only low levels of the molecule. This organism also fixes carbon dioxide via a reverse tricarboxylic acid cycle, using electrons derived from hydrogen or reduced sulfur to drive the reaction, instead of via the Calvin cycle like many other photosynthetic organisms.