Pre_GI: SWBIT SVG BLASTP

Query: NC_014034:152264 Rhodobacter capsulatus SB1003 chromosome, complete genome

Lineage: Rhodobacter capsulatus; Rhodobacter; Rhodobacteraceae; Rhodobacterales; Proteobacteria; Bacteria

General Information: This strain is a derivative strain isolated in the laboratory of Barry Marrs from the classical progenitor strain B10. It is rifampicin-resistant, produces GTA, and is capable of growing under high illumination (resistant to photooxidative killing). Bacteria belonging to the Rhodobacter group are metabolically versatile as they are able to use photosynthesis and usually can grow under both anaerobic and aerobic conditions. This organism is a facultatively phototrophic purple non-sulfur bacterium and the type species of the Rhodobacter group. The colony's color depends largely on the amount of oxygen present in its environment. While it is able to produce cellular energy in a number of different ways, it can rely on anoxygenic photosynthesis under anaerobic conditions in the presence of light. Some strains produce the Gene Transfer Element (GTA), a pro-phage particle capable of transferring genetic material between strains.

- Sequence; - BLASTP hit: hover for score (Low score = Light, High score = Dark);
- hypothetical protein; - cds: hover for description

BLASTP Alignment.txt

Subject: NC_002946:1786000 Neisseria gonorrhoeae FA 1090, complete genome

Lineage: Neisseria gonorrhoeae; Neisseria; Neisseriaceae; Neisseriales; Proteobacteria; Bacteria

General Information: A serum-resistant streptomycin-resistant proline-requiring strain isolated from a patient with disseminated gonococcal infections. Causes gonorrhea. One of two pathogenic Neisseria, this species causes the sexually transmitted disease (STD) gonorrhea, which is the leading reportable STD in adults in the USA. This human-specific organism colonizes and invades the mucosal surface of the urogenital epithelium, crosses the epithelial barrier, and ends up multiplying on the basement membrane. The Opa proteins are responsible for the opaque colony phenotype due to the tight junctions between adjacent Neisseria, and are also responsible for tight adherence to host cells. This organism, like Neisseria meningitidis, is also naturally competent for DNA uptake.