Pre_GI: SWBIT SVG BLASTP

Query: NC_013961:2579000 Erwinia amylovora, complete genome

Lineage: Erwinia amylovora; Erwinia; Enterobacteriaceae; Enterobacteriales; Proteobacteria; Bacteria

General Information: This bacterium is the causative agent of Fire Blight, a destructive disease of Maloid fruit trees, such as apple and pear. Outbreaks are sporadic in the Northeast, but result in serious damage to roots, blossoms, fruit, and shoots when they occur. The pathogen overwinters in cankers or in smaller limbs. During early spring, in response to both temperature increases and bud development, the bacteria multiplies and may be seen as a yellowish ooze around the perimeter of the canker. Flies and other insects are attracted to the ooze and disperse the inoculum to other trees in the orchard. This species has recently become resistant to streptomycin, an antibiotic traditionally used in its control.

- Sequence; - BLASTP hit: hover for score (Low score = Light, High score = Dark);
- hypothetical protein; - cds: hover for description

BLASTP Alignment.txt

Subject: NC_003155:3913789 Streptomyces avermitilis MA-4680, complete genome

Lineage: Streptomyces avermitilis; Streptomyces; Streptomycetaceae; Actinomycetales; Actinobacteria; Bacteria

General Information: This strain (ATCC 31267) was isolated and characterized in 1978 by R. Burg and colleagues from a soil sample collected in Shizuoka Prefecture, Japan. Antibiotic-producing bacterium. The characteristic earthy smell of freshly plowed soil is actually attributed to the aromatic terpenoid geosmin produced by species of Streptomyces. There are currently 364 known species of this genus, many of which are the most important industrial producers of antibiotics and other secondary metabolites of antibacterial, antifungal, antiviral, and antitumor nature, as well as immunosuppressants, antihypercholesterolemics, etc. Streptomycetes are crucial in the soil environment because their diverse metabolism allows them to degrade the insoluble remains of other organisms, including recalcitrant compounds such as lignocelluloses and chitin. Streptomycetes produce both substrate and aerial mycelium. The latter shows characteristic modes of branching, and in the course of the streptomycete complex life cycle, these hyphae are partly transformed into chains of spores, which are often called conidia or arthrospores. An important feature in Streptomyces is the presence of type-I peptidoglycan in the cell walls that contains characteristic interpeptide glycine bridges. Another remarkable trait of streptomycetes is that they contain very large (~8 million base pairs which is about twice the size of most bacterial genomes) linear chromosomes with distinct telomeres. These rearrangements consist of the deletion of several hundred kilobases, often associated with the amplification of an adjacent sequence, and lead to metabolic diversity within the Streptomyces group. Sequencing of several strains of Streptomyces is aimed partly on understanding the mechanisms involved in these diversification processes. This organism is a well known producer of the anti-parasitic agent avermectin which is widely used to rid livestock of worm and insect infestations and to protect large numbers of people from river blindness in sub-Saharan Africa.