Query: NC_013928:370893 Streptococcus mutans NN2025, complete genome Lineage: Streptococcus mutans; Streptococcus; Streptococcaceae; Lactobacillales; Firmicutes; Bacteria General Information: This strain is a clinical serotype c strain isolated in Japan in 2002. Streptococci are Gram-positive, nonmotile, nonsporeforming, catalase-negative cocci that occur in pairs or chains. Members of this genus vary widely in pathogenic potential. Most streptococci are facultative anaerobes, and some are obligate anaerobes. Streptococcus mutans was first isolated in 1924 from human carious (cavities) lesions and is the main cause of tooth decay. This organism thrives in a bacterial community known as a dental plaque which forms on the surface of teeth. This organism has also been implicated in cases of infective endocarditis.
- Sequence; - BLASTP hit: hover for score (Low score = Light, High score = Dark); - hypothetical protein; - cds: hover for description
General Information: Originally identified as Pseudomonas sp. LB400 that was found in contaminated soil in upstate New York, USA, this organism is now classified in the genus Burkholderia. Polychlorinated biphenyl-degrading bacterium. Member of the genus Burkholderia are versatile organisms that occupy a surprisingly wide range of ecological niches. These bacteria are exploited for biocontrol, bioremediation, and plant growth promotion purposes. Burkholderia xenovorans has been found on fungi, animals, and from human clinical isolates such as from cystic fibrosis (CF) patients. It may be tightly associated with white-rot fungus, as the degadation of lignin by the fungus results in aromatic compounds the bacterium can then degrade. This organism is exceptionally capable of degradation of polychlorinated biphenyls (PCBs), which are environmental pollutants, and thus it may play a role in bioremediation of polluted and toxic sites and is studied as a model bioremediator. PCBs can be utilized as the sole carbon and energy source by this organism. The pathways for degradation of PCBs have been extensively characterized at both the genetic and the molecular level and have become a model system for the bacterial breakdown of these very persistent environmental contaminants.