Pre_GI: SWBIT SVG BLASTP

Query: NC_013892:1503162 Xenorhabdus bovienii SS-2004 chromosome, complete genome

Lineage: Xenorhabdus bovienii; Xenorhabdus; Enterobacteriaceae; Enterobacteriales; Proteobacteria; Bacteria

General Information: Insect pathogenic, facultatively anaerobic, non-spore forming Gram-negative bacterium. This genus is a group of insect pathogens which live in a mutualistic relationship with the soil nematode family Steinernematidae. Free-living, juvenile Steinernema spp. enter insect larvae through the digestive tract. They penetrate the larvae body cavity and release Xenorhabdus spp. into the hemolymph (blood). The bacteria multiply rapidly, killing the larvae, and providing suitable nutrient conditions for the growth and reproduction of the Steinernema spp. The nematode matures and reproduces. The new juveniles reassociate with Xenorhabdus spp. and are released into the soil.Xenorhabdus bovienii. Unlike Xenorhabdus nematophila, which is found in only in Steinernema carpocapsae, Xenorhabdus bovienii is associated with several different species of Steinernema.

No Graph yet!

Subject: NC_014228:3442159 Xenorhabdus nematophila ATCC 19061, complete genome

Lineage: Xenorhabdus nematophila; Xenorhabdus; Enterobacteriaceae; Enterobacteriales; Proteobacteria; Bacteria

General Information: This genus is a group of insect pathogens which live in a mutualistic relationship with the soil nematode family, Steinernematidae. Free-living, juvenile Steinernema spp. enter insect larvae through the digestive tract. They penetrate the larvae body cavity and release Xenorhabdus spp. into the hemolymph (blood). The bacteria multiply rapidly, killing the larvae, and providing suitable nutrient conditions for the growth and reproduction of the Steinernema spp. The nematode matures and reproduces. The new juveniles reassociate with Xenorhabdus spp. and are released into the soil. Unlike Xenorhabdus bovienii, which is found in different Steinernema spp., Xenorhabdus nematophila is associated specifically with Steinernema carpocapsae and can be used as a model for studying host specificity.