Pre_GI: SWBIT SVG BLASTP

Query: NC_013892:1483000 Xenorhabdus bovienii SS-2004 chromosome, complete genome

Lineage: Xenorhabdus bovienii; Xenorhabdus; Enterobacteriaceae; Enterobacteriales; Proteobacteria; Bacteria

General Information: Insect pathogenic, facultatively anaerobic, non-spore forming Gram-negative bacterium. This genus is a group of insect pathogens which live in a mutualistic relationship with the soil nematode family Steinernematidae. Free-living, juvenile Steinernema spp. enter insect larvae through the digestive tract. They penetrate the larvae body cavity and release Xenorhabdus spp. into the hemolymph (blood). The bacteria multiply rapidly, killing the larvae, and providing suitable nutrient conditions for the growth and reproduction of the Steinernema spp. The nematode matures and reproduces. The new juveniles reassociate with Xenorhabdus spp. and are released into the soil.Xenorhabdus bovienii. Unlike Xenorhabdus nematophila, which is found in only in Steinernema carpocapsae, Xenorhabdus bovienii is associated with several different species of Steinernema.

- Sequence; - BLASTP hit: hover for score (Low score = Light, High score = Dark);
- hypothetical protein; - cds: hover for description

BLASTP Alignment.txt

Subject: NC_007005:1636875 Pseudomonas syringae pv. syringae B728a, complete genome

Lineage: Pseudomonas syringae; Pseudomonas; Pseudomonadaceae; Pseudomonadales; Proteobacteria; Bacteria

General Information: This strain is the causal agent of brown spot disease on beans. It was isolated from a snap bean leaflet in Wisconsin, USA. Plant pathogen. Bacteria belonging to the Pseudomonas group are common inhabitants of soil and water and can also be found on the surfaces of plants and animals. Pseudomonas bacteria are found in nature in a biofilm or in planktonic form. Pseudomonas bacteria are renowned for their metabolic versatility as they can grow under a variety of growth conditions and do not need any organic growth factors. This species includes many plant pathogens of important crops, which makes it a model organism in plant pathology. Its natural environment is on the surface of plant leaves and it can withstand various stressful conditions, like rain, wind, UV radiation and drought. It can colonize plants in a non-pathogenic state and can rapidly take advantage of changing environmental conditions to induce disease in susceptible plants by shifting gene expression patterns.