Pre_GI: SWBIT SVG BLASTP

Query: NC_013855:964000 Azospirillum sp. B510 plasmid pAB510a, complete sequence

Lineage: Azospirillum; Azospirillum; Rhodospirillaceae; Rhodospirillales; Proteobacteria; Bacteria

General Information: Azospirillum are commonly isolated from the rhizosphere and root surfaces from a wide variety of plants. Azospirillum species are considered to be plant growth promoting organisms, producing plant hormones for cell elongation (auxins), cell division and growth (cytokinins) and stem elongation (gibberellins). These compounds contribute to an enhanced uptake of nutrients and water and thus increased plant growth. Azospirillum sp. B510 was isolated from rice in Japan.

- Sequence; - BLASTP hit: hover for score (Low score = Light, High score = Dark);
- hypothetical protein; - cds: hover for description

BLASTP Alignment.txt

Subject: NC_001263:2574755 Deinococcus radiodurans R1 chromosome 1, complete sequence

Lineage: Deinococcus radiodurans; Deinococcus; Deinococcaceae; Deinococcales; Deinococcus-Thermus; Bacteria

General Information: This red-pigmented organism's name means "strange berry that withstands radiation", marking the fact that this organism is one of the most radiation-resistant known. It can tolerate radiation levels at 1000 times the levels that would kill a human and it was originally isolated in 1956 from a can of meat that had been irradiated with X-rays. The resistance to radiation may reflect its resistance to dessication, which also causes DNA damage. This organism may be of use in cleaning up toxic metals found at nuclear weapons production sites due to the radiation resistance. This bacterium is also a highly efficient transformer, and can readily take up exogenous DNA from the environment, which may also aid DNA repair. This organism carries multiple copies of many DNA repair genes, suggesting a robust system for dealing with DNA damage. The recombination system may rely on multiple copies of various repeat elements found throughout the genome.