Pre_GI: SWBIT SVG BLASTP

Query: NC_013199:1886271 Lactobacillus rhamnosus Lc 705, complete genome

Lineage: Lactobacillus rhamnosus; Lactobacillus; Lactobacillaceae; Lactobacillales; Firmicutes; Bacteria

General Information: They are commonly found in the oral, vaginal, and intestinal regions of many animals. They are important industrial microbes that contribute to the production of cheese, yogurt, and other products such as fermented milks, all stemming from the production of lactic acid, which inhibits the growth of other organisms as well as lowering the pH of the food product. Industrial production requires the use of starter cultures, which are carefully cultivated, created, and maintained, which produce specific end products during fermentation that impart flavor to the final product, as well as contributing important metabolic reactions, such as the breakdown of milk proteins during cheese production. The end product of fermentation, lactic acid, is also being used as a starter molecule for complex organic molecule syntheses. Lactobacillus rhamnosus is used in the manufacture of cheese and other dairy products to aid ripening and enhance flavors. This organism has also been shown to stimulate the immune system and have antibacterial activity against intestinal pathogens, indicating that it may be useful as a probiotic.

- Sequence; - BLASTP hit: hover for score (Low score = Light, High score = Dark);
- hypothetical protein; - cds: hover for description

BLASTP Alignment.txt

Subject: NC_007907:2830574 Desulfitobacterium hafniense Y51, complete genome

Lineage: Desulfitobacterium hafniense; Desulfitobacterium; Peptococcaceae; Clostridiales; Firmicutes; Bacteria

General Information: This strain was isolated from soil contaminated with tetrachloroethene (PCE) in Japan. It can efficiently dehalogenate PCEs via trichloroethene (TCE) to cis-1,2-dichloroethene (cis-1,2-DCE). It can also dehalogenase tetra-, penta-, and hexachloroethanes. Hydrocarbon dehalogenator. This organism can dehalogenate a variety of hydrocarbons and can utilize fumarate, sulfite, and thiosulfate (but not thiousulfate) as terminal electron acceptors. Some important pollutants such as polychlorinated biphenyls (PCBs) may be degraded by this organism.