Pre_GI: SWBIT SVG BLASTP

Query: NC_013093:1 Actinosynnema mirum DSM 43827, complete genome

Lineage: Actinosynnema mirum; Actinosynnema; Pseudonocardiaceae; Actinomycetales; Actinobacteria; Bacteria

General Information: Isolation: Blade of grass from Raritan River NJ; Country: USA; Temp: Mesophile; Temp: 10-30C; Habitat: Soil. This bacterium produces the antibiotic nocardicin A. Soil dwelling, nonmotile aerobe it has fine hyphae which form aerial and substrate mycelia. Motile spores are borne on synnemata, compact groups of erect hyphae. It produces nocardicin antibiotics and is able to inhibit growth of several Gram-positive bacteria as well as some filamentous fungi and yeasts.

- Sequence; - BLASTP hit: hover for score (Low score = Light, High score = Dark);
- hypothetical protein; - cds: hover for description

BLASTP Alignment.txt

Subject: NC_004578:5623783 Pseudomonas syringae pv. tomato str. DC3000, complete genome

Lineage: Pseudomonas syringae group genomosp. 3; Pseudomonas; Pseudomonadaceae; Pseudomonadales; Proteobacteria; Bacteria

General Information: While pathogenic on Arabidopsis thaliana, it is mainly characterized as causing bacterial speck disease on tomato plants, which has a large economic impact. This organism is mainly endophytic and is a poor colonizes of plant surfaces but can multiply within the host. Bacteria belonging to the Pseudomonas group are common inhabitants of soil and water and can also be found on the surfaces of plants and animals. Pseudomonas bacteria are found in nature in a biofilm or in planktonic form. Pseudomonas bacteria are renowned for their metabolic versatility as they can grow under a variety of growth conditions and do not need any organic growth factors. This species includes many plant pathogens of important crops, which makes it a model organism in plant pathology. Its natural environment is on the surface of plant leaves and it can withstand various stressful conditions, like rain, wind, UV radiation and drought. It can colonize plants in a non-pathogenic state and can rapidly take advantage of changing environmental conditions to induce disease in susceptible plants by shifting gene expression patterns.