Pre_GI: SWBIT SVG BLASTP

Query: NC_012850:4422966 Rhizobium leguminosarum bv. trifolii WSM1325, complete genome

Lineage: Rhizobium leguminosarum; Rhizobium; Rhizobiaceae; Rhizobiales; Proteobacteria; Bacteria

General Information: Temp: Mesophile; Habitat: Host, Root nodule. This biovar is a symbiont of clover plants and is important commercially as it is used in the agricultural industry. Strain WSM1325 is compatible with many perennial clovers of Mediterranean origin used in farming, such as T. pratense, and is therefore one of the most important clover inoculants but is incompatible with American and African perennial clovers, such as those nodulated by the dissimilar strain WSM2304. This organism, like other Rhizobia, establishes a symbiotic relationship with a legume plant, providing nitrogen in exchange for a protected environment. The legume roots secrete flavonoids and isoflavonoids which the bacteria recognize and use to turn on genes involved in root nodulation. Many of the root nodulation genes are involved in synthesis and secretion of a nodule inducing signal, a lipochito-oligosaccharide molecule, which the plant recognizes, triggering nodule formation. The bacterium is endocytosed and exists inside a membrane bound organelle, the symbiosome, and fixes nitrogen for the plant cell while the host cell provides carbon compounds for the bacterium to grow on. The nitrogen fixation is important as it obviates the need for expensive and environmentally damaging fertilizer use.

- Sequence; - BLASTP hit: hover for score (Low score = Light, High score = Dark);
- hypothetical protein; - cds: hover for description

BLASTP Alignment.txt

Subject: NC_007576:1854136 Lactobacillus sakei subsp. sakei 23K, complete genome

Lineage: Lactobacillus sakei; Lactobacillus; Lactobacillaceae; Lactobacillales; Firmicutes; Bacteria

General Information: This strain (23K) was originally isolated from a French sausage. They are commonly found in the oral, vaginal, and intestinal regions of many animals. They are important industrial microbes that contribute to the production of cheese, yogurt, and other products such as fermented milks, all stemming from the production of lactic acid, which inhibits the growth of other organisms as well as lowering the pH of the food product. Industrial production requires the use of starter cultures, which are carefully cultivated, created, and maintained, which produce specific end products during fermentation that impart flavor to the final product, as well as contributing important metabolic reactions, such as the breakdown of milk proteins during cheese production. The end product of fermentation, lactic acid, is also being used as a starter molecule for complex organic molecule syntheses. Lactobacillus sakei is the predominant lactic acid bacteria found on fresh meat. This organism is used as a starter in the production of fermented meat products, and plays a major role in preserving meat products by inhibiting the growth of other bacteria.