Pre_GI: SWBIT SVG BLASTP

Query: NC_012850:3454270 Rhizobium leguminosarum bv. trifolii WSM1325, complete genome

Lineage: Rhizobium leguminosarum; Rhizobium; Rhizobiaceae; Rhizobiales; Proteobacteria; Bacteria

General Information: Temp: Mesophile; Habitat: Host, Root nodule. This biovar is a symbiont of clover plants and is important commercially as it is used in the agricultural industry. Strain WSM1325 is compatible with many perennial clovers of Mediterranean origin used in farming, such as T. pratense, and is therefore one of the most important clover inoculants but is incompatible with American and African perennial clovers, such as those nodulated by the dissimilar strain WSM2304. This organism, like other Rhizobia, establishes a symbiotic relationship with a legume plant, providing nitrogen in exchange for a protected environment. The legume roots secrete flavonoids and isoflavonoids which the bacteria recognize and use to turn on genes involved in root nodulation. Many of the root nodulation genes are involved in synthesis and secretion of a nodule inducing signal, a lipochito-oligosaccharide molecule, which the plant recognizes, triggering nodule formation. The bacterium is endocytosed and exists inside a membrane bound organelle, the symbiosome, and fixes nitrogen for the plant cell while the host cell provides carbon compounds for the bacterium to grow on. The nitrogen fixation is important as it obviates the need for expensive and environmentally damaging fertilizer use.

- Sequence; - BLASTP hit: hover for score (Low score = Light, High score = Dark);
- hypothetical protein; - cds: hover for description

BLASTP Alignment.txt

Subject: NC_007722:55558 Erythrobacter litoralis HTCC2594, complete genome

Lineage: Erythrobacter litoralis; Erythrobacter; Erythrobacteraceae; Sphingomonadales; Proteobacteria; Bacteria

General Information: This strain was collected from the Sargasso Sea at a depth of 10 meters. Phototrophic bacterium. Organisms in this aerobic phototrophic genus are found in marine environments. Members of this group produce bacteriochlorophyll a, which is normally found in anaerobic organisms. One theory to explain this is that the anoxygenic photosynthetic gene cluster was acquired by these organisms via lateral gene transfer. Although they require an organic carbon substrate for growth, they are able to supplement a significant fraction of their metabolic requirements with photosynthetically derviced energy. This species was isolated from a marine cyanobacterial mat. Although they require an organic carbon substrate for growth, they are able to supplement a significant fraction of their metabolic requirements with photosynthetically derviced energy. The presence of the carotenoids bacteriorubixanthinal and erythroxanthin sulfate give this organism a reddish color.