Pre_GI: SWBIT SVG BLASTP

Query: NC_012846:1888000 Bartonella grahamii as4aup, complete genome

Lineage: Bartonella grahamii; Bartonella; Bartonellaceae; Rhizobiales; Proteobacteria; Bacteria

General Information: Bartonella grahamii (strain as4aup) is Gram-negative bacterium isolated from a wood mouse (Apodemus sylvaticus) in central Sweden. Bartonella are human and animal pathogens which infect erythrocytes and can cause angiogenic lesions. These organisms cause diseases in humans such as Oroya fever, Trench fever, endocarditis, and Cat Scratch disease. Transmission of this organism is via the bite of a blood-sucking arthropod. Bartonella grahamii can be isolated from the blood of rodents and is found world wide. Fleas may be the transmission vector for Bartonella grahamii to other rodents. Human disease appears to be rare and associated with an immunocompromised state.

- Sequence; - BLASTP hit: hover for score (Low score = Light, High score = Dark);
- hypothetical protein; - cds: hover for description

BLASTP Alignment.txt

Subject: NC_011959:972798 Thermomicrobium roseum DSM 5159, complete genome

Lineage: Thermomicrobium roseum; Thermomicrobium; Thermomicrobiaceae; Thermomicrobiales; Chloroflexi; Bacteria

General Information: Thermomicrobium roseum DSM 5159 was isolated from Yellowstone National Park, USA. Obligate thermophile with unusual cell wall structure. Thermomicrobium roseum is a red-pigmented, rod-shaped, Gram-negative extreme thermophile that possesses both an atypical cell wall composition and an unusual cell membrane that is composed entirely of long-chain 1,2-diols. Analyses of environmental sequences from hot spring environments show that T.roseum displays a low quantity but ubiquitous presence in top layers of microbial mats. Few standard housekeeping genes are found on the megaplasmid, however, it does encode a complete system for chemotaxis including both chemosensory components and an entire flagellar apparatus. T. roseum oxidizes CO aerobically, making it the first thermophile known to do so. In addition, is is propose that glycosylation of its carotenoids plays a crucial role in the adaptation of the cell membrane to this bacterium's thermophilic lifestyle. Because T. roseum is a deep-branching member of this phylum, eventhough this species is not photosynthetic, analysis of the genome provides some insight into the origins of photosynthesis in the Chloroflexi.