Pre_GI: SWBIT SVG BLASTP

Query: NC_012814:1757753 Bifidobacterium animalis subsp. lactis Bl-04, complete genome

Lineage: Bifidobacterium animalis; Bifidobacterium; Bifidobacteriaceae; Bifidobacteriales; Actinobacteria; Bacteria

General Information: ATCC SD5219. B. animalis subsp. lactis is a Gram-positive lactic acid bacterium commonly found in the gut of healthy humans, which has the ability to survive in the GIT, adhere to human epithelial cells in vitro, modify fecal flora, modulate the host immune response, utilize non-digestible oligosaccharides, and prevent microbial gastroenteritis and colitis.

- Sequence; - BLASTP hit: hover for score (Low score = Light, High score = Dark);
- hypothetical protein; - cds: hover for description

BLASTP Alignment.txt

Subject: NC_009012:3421000 Clostridium thermocellum ATCC 27405, complete genome

Lineage: Clostridium thermocellum; Clostridium; Clostridiaceae; Clostridiales; Firmicutes; Bacteria

General Information: This strain is a well studied producer of endoglucanase and several restriction endonucleases. Thermophilic cellulose degrading bacterium. This genus comprises about 150 metabolically diverse species of anaerobes that are ubiquitous in virtually all anoxic habitats where organic compounds are present, including soils, aquatic sediments and the intestinal tracts of animals and humans. This shape is attributed to the presence of endospores that develop under conditions unfavorable for vegetative growth and distend single cells terminally or sub-terminally. Spores germinate under conditions favorable for vegetative growth, such as anaerobiosis and presence of organic substrates. It is believed that present day Mollicutes (Eubacteria) have evolved regressively (i.e., by genome reduction) from gram-positive clostridia-like ancestors with a low GC content in DNA. Some species are capable of producing organic solvents (acetone, ethanol, etc,), molecular hydrogen and other useful compounds. This organism is a thermophilic anaerobe that produces an extracellular enzyme system capable of degrading crystalline cellulose to soluble sugars that are further utilized as the carbon source for growth.