Pre_GI: SWBIT SVG BLASTP

Query: NC_012803:1552122 Micrococcus luteus NCTC 2665, complete genome

Lineage: Micrococcus luteus; Micrococcus; Micrococcaceae; Actinomycetales; Actinobacteria; Bacteria

General Information: Temp: Mesophile; Habitat: Soil. Micrococcus luteus NCTC 2665 has potential in bioremediation due to its ability to sequester metals (i.e. gold and strontium), and it is being used for gold concentration from low-abundance ores. Micrococcus luteus was originally isolated by Alexander Fleming in 1929 as Micrococcus lysodeikticus. This organism can be found in many environments including soil, water, animals, and dairy products. Micrococcus luteus is able to survive in the environment for long periods and has been isolated from inclusions in amber.

- Sequence; - BLASTP hit: hover for score (Low score = Light, High score = Dark);
- hypothetical protein; - cds: hover for description

BLASTP Alignment.txt

Subject: NC_007426:205390 Natronomonas pharaonis DSM 2160, complete genome

Lineage: Natronomonas pharaonis; Natronomonas; Halobacteriaceae; Halobacteriales; Euryarchaeota; Archaea

General Information: Isolated from Lake Gabara in Egypt. Extreme haloalkaliphilic archeon. Natronomonas pharaonis is able to survive at high salt and pH conditions which results in limited nitrogen availability through ammonium. In order to compensate for this, Natronomonas pharaonis has developed three systems to promote nitrogen assimilation: direct uptake of ammonia, uptake of nitrate, and uptake of urea. Another problem with high pH environments is the use of a proton gradient for the generation of ATP, which other alkaliphiles have adapted to by substitution of sodium ions for protons. However, this organism utilizes protons for ATP generation as determined by experimental data.