Pre_GI: SWBIT SVG BLASTP

Query: NC_012731:3500545 Klebsiella pneumoniae NTUH-K2044 chromosome, complete genome

Lineage: Klebsiella pneumoniae; Klebsiella; Enterobacteriaceae; Enterobacteriales; Proteobacteria; Bacteria

General Information: This strain was isolated from a liver abscess. This organism is the most medically important organism within the genus Klebsiella. It is an environmental organism found in water, soil, and on the surface of plants. Several strains have been isolated from plant tissues and are nitrogen-fixing endophytes that may be a source of nitrogen for the plant. Other strains can become opportunistic pathogens which infect humans, and typically causes hospital-acquired infections in immunocompromised patients. Major sites of infection include the lungs, where it causes a type of pneumonia, and urinary tract infections. Klebsiella can also enter the bloodstream (bacterimia) and cause sepsis. The pathogen can also infect animals and cause inflammation of the uterus in horses as well as more generalized infections in other mammals. This organism expresses numerous pathogenicity factors, including multiple adhesins, capsular polysaccharide, siderophores, and lipopolysaccharide for the evasion of host defenses. The multiple antibiotic resistance genes carried on the chromosome inhibit efforts to clear the organism from infected patients via antibiotic use.

- Sequence; - BLASTP hit: hover for score (Low score = Light, High score = Dark);
- hypothetical protein; - cds: hover for description

BLASTP Alignment.txt

Subject: NC_006512:551312 Idiomarina loihiensis L2TR, complete genome

Lineage: Idiomarina loihiensis; Idiomarina; Idiomarinaceae; Alteromonadales; Proteobacteria; Bacteria

General Information: This is the type strain for this organism, which was isolated from a hydrothermal vent at a depth of 1300 m from the Lo'ihi Seamount southeast of Hawaii. This organism grows optimally in salt concentrations of 7.5 to 10%. Genome comparison has suggested that the bacterium has maintained its amino acid transport and degradation systems but lost sugar transport and certain sugar metabolic genes suggesting that it lives on amino acids rather than sugars. This may be in keeping with the environment this organism grows in, which is at hydrothermal deep sea vents that are characterized by collections of proteinaceous particles. This organism may colonize these particles by producing exopolysaccharides.