Pre_GI: SWBIT SVG BLASTP

Query: NC_012632:1212780 Sulfolobus islandicus M.16.27 chromosome, complete genome

Lineage: Sulfolobus islandicus; Sulfolobus; Sulfolobaceae; Sulfolobales; Crenarchaeota; Archaea

General Information: This strain was isolated from a hot spring on the Kamchatka Penninsula, in the Russian Far East. Hyperthermophilic acidophilic sulfur-metabolizing archeon. Sulfolobus islandicus is a thermo-acidophilic archeae commonly identified in hot, acidic sulfur springs. This organism can grow both chemoautotrophically, using sulfur or hydrogen sulfide, and heterotrophically. S. islandicus can play host to a number of plasmids and viruses which may be useful in developing tools for genetic analysis. In addition, Sulfolobus islandicus isolates from different areas in Russia, Iceland, and the United States have been shown to be genetically distinct from each other making this organism useful for comparative analysis.

- Sequence; - BLASTP hit: hover for score (Low score = Light, High score = Dark);
- hypothetical protein; - cds: hover for description

BLASTP Alignment.txt

Subject: NC_008525:270310 Pediococcus pentosaceus ATCC 25745, complete genome

Lineage: Pediococcus pentosaceus; Pediococcus; Lactobacillaceae; Lactobacillales; Firmicutes; Bacteria

General Information: Use in fermentation of food products. A distinctive characteristic of pediococci is their ability to form tetrads via cell division in two perpendicular directions in a single plane. Like other lactic acid bacteria, species of Pediococcus are acid tolerant, cannot synthesize porphyrins, and possess a strictly fermentative (homofermentative) facultatively anaerobic metabolism with lactic acid as the major metabolic end product. They also occur in such food products as cured meat, raw sausages, and marinated fish, and are are used for biotechnological processing and preservation of foods. This bacterium can be isolated from a variety of plant materials and bacterial-ripened cheeses. This organism is used as an acid producing starter culture in the fermentation of some sausages, cucumbers, green beans, soy milk, and silage. Some strains have been reported to contain several (3-5) resident plasmids that render the bacterium capable of fermenting some sugars (raffinose, melibiose, and sucrose), as well as producing bacteriocins.