Pre_GI: SWBIT SVG BLASTP

Query: NC_012582:272320 Vibrio cholerae O395 chromosome chromosome I, complete sequence

Lineage: Vibrio cholerae; Vibrio; Vibrionaceae; Vibrionales; Proteobacteria; Bacteria

General Information: Vibrio cholerae O395 is a classical O1 serotype strain of the Ogawa biotype. This genus is abundant in marine or freshwater environments such as estuaries, brackish ponds, or coastal areas; regions that provide an important reservoir for the organism in between outbreaks of the disease. Vibrio can affect shellfish, finfish, and other marine animals and a number of species are pathogenic for humans. Vibrio cholerae can colonize the mucosal surface of the small intestines of humans where it will cause cholera, a severe and sudden onset diarrheal disease. One famous outbreak was traced to a contaminated well in London in 1854 by John Snow, and epidemics, which can occur with extreme rapidity, are often associated with conditions of poor sanitation. The disease has a high lethality if left untreated, and millions have died over the centuries. There have been seven major pandemics between 1817 and today. Six were attributed to the classical biotype, while the 7th, which started in 1961, is associated with the El Tor biotype.

No Graph yet!

Subject: NC_007912:2697581 Saccharophagus degradans 2-40, complete genome

Lineage: Saccharophagus degradans; Saccharophagus; Alteromonadaceae; Alteromonadales; Proteobacteria; Bacteria

General Information: This strain is a marine gamma-proteobacterium that was isolated from decaying Spartina alterniflora, a salt marsh cord grass, in the Chesapeake Bay, USA. Saccharophagus degradans 2-40 has been used to produce ethanol from plant material and may be useful for the production bioethanol. Bacterium able to degrade complex carbohydrates. Saccharophagus degradans is capable of degrading insoluble complex carbohydrates through the collective action of enzyme complexes found on its cell surfaces, utilizing the degradation products as a carbon source. This organism may be useful in bioremediation. The degradative enzymes this organism produces are typically exoenzymes that are collected and organized into large surface complexes termed cellulosomes.