Pre_GI: SWBIT SVG BLASTP

Query: NC_012563:4004709 Clostridium botulinum A2 str. Kyoto, complete genome

Lineage: Clostridium botulinum; Clostridium; Clostridiaceae; Clostridiales; Firmicutes; Bacteria

General Information: This strain was isolated from a case of infant botulism in Kyoto, Japan in 1978. This organism produces one of the most potent and deadly neurotoxins known, a botulinum toxin that prevents the release of acetylcholine at the neuromuscular junction, thereby inhibiting muscle contraction and causing paralysis. In most cases the diseased person dies of asphyxiation as a result of paralysis of chest muscles involved in breathing. The spores are heat-resistant and can survive in inadequately heated, prepared, or processed foods. Spores germinate under favorable conditions (anaerobiosis and substrate-rich environment) and bacteria start propagating very rapidly, producing the toxin.Botulinum toxin, and C. botulinum cells, has been found in a wide variety of foods, including canned ones. Almost any food that has a high pH (above 4.6) can support growth of the bacterium. Honey is the most common vehicle for infection in infants. Food poisoning through C. botulinum is the most frequent type of infection caused by this bacterium. The wound botulism that occurs when C. botulinum infects an individual via an open wound is much rarer and is very similar to tetanus disease. There are several types of botulinum toxin known (type A through type F), all of them being neurotoxic polypeptides. The most common and widely distributed are strains and serovars of C. botulinum that produce type A toxin.

- Sequence; - BLASTP hit: hover for score (Low score = Light, High score = Dark);
- hypothetical protein; - cds: hover for description

BLASTP Alignment.txt

Subject: NC_008380:58232 Rhizobium leguminosarum bv. viciae 3841, complete genome

Lineage: Rhizobium leguminosarum; Rhizobium; Rhizobiaceae; Rhizobiales; Proteobacteria; Bacteria

General Information: This biovar nodulates legumes in the Tribe Viciae (Vicia, Pisum, Lathyrus, Lens). This strain is a spontaneous streptomycin-resistant mutant of strain 300. Nitrogen-fixing plant symbiont. This organism, like other Rhizobia, establishes a symbiotic relationship with a legume plant, providing nitrogen in exchange for a protected environment. The legume roots secrete flavonoids and isoflavonoids which the bacteria recognize and use to turn on genes involved in root nodulation. Many of the root nodulation genes are involved in synthesis and secretion of a nodule inducing signal, a lipochito-oligosaccharide molecule, which the plant recognizes, triggering nodule formation. The bacterium is endocytosed and exists inside a membrane bound organelle, the symbiosome, and fixes nitrogen for the plant cell while the host cell provides carbon compounds for the bacterium to grow on. The nitrogen fixation is important as it obviates the need for expensive and environmentally damaging fertilizer use.