Pre_GI: SWBIT SVG BLASTP

Query: NC_012560:2026483 Azotobacter vinelandii DJ, complete genome

Lineage: Azotobacter vinelandii; Azotobacter; Pseudomonadaceae; Pseudomonadales; Proteobacteria; Bacteria

General Information: This organism was first isolated from the soil in Vineland, New Jersey, although it is found worldwide. It is a large obligate aerobe that has one of the highest respiratory rates of any organism. Azotobacter vinelandii also produces a number of unusual nitrogenases which allow it to fix atmospheric nitrogen to ammonia, a compound it can then use as a nitrogen source. It protects the oxygen-sensitive nitrogenase enzymes through its high respiratory rate, which sequesters the nitrogenase complexes in an anoxic environment. This organism has a number of unusual characteristics. Under extreme environmental conditions, the cell will produce a cyst that is resistant to dessication and is surrounded by two capsular polysaccharide layers. This organism produces two industrially important polysaccharides, poly-beta-hydroxybutyrate (PHB) and alginate. PHB is a thermoplastic biopolymer, and alginate is used in the food industry. Alginate is also used by the pathogen Pseudomonas aeruginosa to infect the lungs of cystic fibrosis patients.

- Sequence; - BLASTP hit: hover for score (Low score = Light, High score = Dark);
- hypothetical protein; - cds: hover for description

BLASTP Alignment.txt

Subject: NC_006177:1254635 Symbiobacterium thermophilum IAM 14863, complete genome

Lineage: Symbiobacterium thermophilum; Symbiobacterium; Shewanellaceae; Clostridiales; Firmicutes; Bacteria

General Information: This symbiotic and thermophilic bacterium was discovered by screening for thermostable tryptanophases in Japanese compost. Cultured growth of this organism requires the presence of another bacterial species, such as a Bacillus or Escherichia coli, which provides diffusable metabolites required for its growth. Pure cultures can be obtained by growing Symbiobacterium thermophilum in a bioreactor, separated from its symbiotic counterpart by a dialysis membrane. Because of its symbiotic nature, it cannot be cultured with conventional methods. Despite a negative reaction for gram stain, this species is placed with the gram-positive bacteria based on 16s phylogenetic analysis.