Pre_GI: SWBIT SVG BLASTP

Query: NC_012560:1564500 Azotobacter vinelandii DJ, complete genome

Lineage: Azotobacter vinelandii; Azotobacter; Pseudomonadaceae; Pseudomonadales; Proteobacteria; Bacteria

General Information: This organism was first isolated from the soil in Vineland, New Jersey, although it is found worldwide. It is a large obligate aerobe that has one of the highest respiratory rates of any organism. Azotobacter vinelandii also produces a number of unusual nitrogenases which allow it to fix atmospheric nitrogen to ammonia, a compound it can then use as a nitrogen source. It protects the oxygen-sensitive nitrogenase enzymes through its high respiratory rate, which sequesters the nitrogenase complexes in an anoxic environment. This organism has a number of unusual characteristics. Under extreme environmental conditions, the cell will produce a cyst that is resistant to dessication and is surrounded by two capsular polysaccharide layers. This organism produces two industrially important polysaccharides, poly-beta-hydroxybutyrate (PHB) and alginate. PHB is a thermoplastic biopolymer, and alginate is used in the food industry. Alginate is also used by the pathogen Pseudomonas aeruginosa to infect the lungs of cystic fibrosis patients.

- Sequence; - BLASTP hit: hover for score (Low score = Light, High score = Dark);
- hypothetical protein; - cds: hover for description

BLASTP Alignment.txt

Subject: NC_008313:3112440 Ralstonia eutropha H16 chromosome 1, complete sequence

Lineage: Cupriavidus necator; Cupriavidus; Burkholderiaceae; Burkholderiales; Proteobacteria; Bacteria

General Information: This strain (ATCC 17699; H16), formerly Alcaligenes eutrophus was originally isolated from sludge. Cupriavidus necator also known as Ralstonia eutropha is a soil bacterium with diverse metabolic abilities. Strains of this organism are resistant to high levels of copper or are able to degrade chloroaromatic compounds such as halobenzoates and nitrophenols making them useful for bioremediation. Other strains have been studied for their ability to produce polyhydroxybutyrates which have industrial application. Another strain is able to attack other bacteria and fungi when nutrients in the soil are low.