Pre_GI: SWBIT SVG BLASTP

Query: NC_012489:1874415 Gemmatimonas aurantiaca T-27, complete genome

Lineage: Gemmatimonas aurantiaca; Gemmatimonas; Gemmatimonadaceae; Gemmatimonadales; Gemmatimonadetes; Bacteria

General Information: Gram-negative, rod-shaped aerobe. Polyphosphate accumulating bacterium. This species was isolated from an anaerobic-aerobic sequential batch reactor operated under enhanced biological phosphorus removal conditions for wastewater treatment. The isolation strategy used targeted slowly growing polyphosphate-accumulating bacteria by combining low-speed centrifugations and prolonged incubation on a low-nutrient medium. This is the first isolated species in the Gemmatimonadetes phylum.

- Sequence; - BLASTP hit: hover for score (Low score = Light, High score = Dark);
- hypothetical protein; - cds: hover for description

BLASTP Alignment.txt

Subject: NC_003063:757999 Agrobacterium tumefaciens str. C58 chromosome linear, complete

Lineage: Agrobacterium fabrum; Agrobacterium; Rhizobiaceae; Rhizobiales; Proteobacteria; Bacteria

General Information: This strain is a biovar 1 nopaline-producing strain originally isolated from a cherry tree tumor. Strains of Agrobacterium are classified in three biovars based on their utilisation of different carbohydrates and other biochemical tests. The differences between biovars are determined by genes on the single circle of chromosomal DNA. Biovar differences are not particularly relevant to the pathogenicity of A. tumefaciens, except in one respect: biovar 3 is found worldwide as the pathogen of gravevines. This species causes crown gall disease of a wide range of dicotyledonous (broad-leaved) plants, especially members of the rose family such as apple, pear, peach, cherry, almond, raspberry and roses. Because of the way that it infects other organisms, this bacterium has been used as a tool in plant breeding. Any desired genes, such as insecticidal toxin genes or herbicide-resistance genes, can be engineered into the bacterial DNA, and then inserted into the plant genome. This process shortens the conventional plant breeding process, and allows entirely new (non-plant) genes to be engineered into crops.